Articles | Volume 29, issue 4
Nonlin. Processes Geophys., 29, 345–361, 2022
Nonlin. Processes Geophys., 29, 345–361, 2022
Research article
07 Oct 2022
Research article | 07 Oct 2022

Applying dynamical systems techniques to real ocean drifters

Irina I. Rypina et al.

Related authors

Competition between chaotic advection and diffusion: stirring and mixing in a 3-D eddy model
Genevieve Jay Brett, Larry Pratt, Irina Rypina, and Peng Wang
Nonlin. Processes Geophys., 26, 37–60,,, 2019
Short summary
Connection between encounter volume and diffusivity in geophysical flows
Irina I. Rypina, Stefan G. Llewellyn Smith, and Larry J. Pratt
Nonlin. Processes Geophys., 25, 267–278,,, 2018
Short summary
Trajectory encounter volume as a diagnostic of mixing potential in fluid flows
Irina I. Rypina and Lawrence J. Pratt
Nonlin. Processes Geophys., 24, 189–202,,, 2017
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Observations of shoaling internal wave transformation over a gentle slope in the South China Sea
Steven R. Ramp, Yiing Jang Yang, Ching-Sang Chiu, D. Benjamin Reeder, and Frederick L. Bahr
Nonlin. Processes Geophys., 29, 279–299,,, 2022
Short summary
Regional study of mode-2 internal solitary waves at the Pacific coast of Central America using marine seismic survey data
Wenhao Fan, Haibin Song, Yi Gong, Shun Yang, and Kun Zhang
Nonlin. Processes Geophys., 29, 141–160,,, 2022
Short summary
Enhanced internal tidal mixing in the Philippine Sea mesoscale environment
Jia You, Zhenhua Xu, Qun Li, Robin Robertson, Peiwen Zhang, and Baoshu Yin
Nonlin. Processes Geophys., 28, 271–284,,, 2021
Short summary
Detecting flow features in scarce trajectory data using networks derived from symbolic itineraries: an application to surface drifters in the North Atlantic
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518,,, 2020
Short summary

Cited articles

Balasuriya, S., Ouellette, N. T., and Rypina, I. I.: Generalized Lagrangian coherent structures, Physica D, 372, 31–51, 2018. 
Beron-Vera, F. J. and LaCasce, J. H.: Statistics of simulated and observed pair separations in the Gulf of Mexico, J. Phys. Oceanogr., 46, 2183–2199, 2016. 
Essink, S., Hormann, V., Centurioni, L. R., and Mahadevan, A.: On characterizing ocean kinematics from surface drifters, J. Atmos. Ocean. Tech., 39, 1183–1198,, 2022. 
Filippi, M., Rypina, I. I., Hadjighasem, A., and Peacock, T.: An Optimized-Parameter Spectral Clustering Approach to Coherent Structure Detection in Geophysical Flows, Fluids, 6, 39,, 2021a. 
Filippi, M., Hadjighasem, A., Rayson, M., Rypina, I. I., Ivey, G., Lowe, R., Gilmour, J., and Peacock, T.: Investigating transport in a tidally driven coral atoll flow using Lagrangian coherent structures, Limnol. Oceanogr., 66, 4017–4027, 2021b. 
Short summary
Techniques from dynamical systems theory have been widely used to study transport in ocean flows. However, they have been typically applied to numerically simulated trajectories of water parcels. This paper applies different dynamical systems techniques to real ocean drifter trajectories from the massive release in the Gulf of Mexico. To our knowledge, this is the first comprehensive comparison of the performance of different dynamical systems techniques with application to real drifters.