Brandt, A. and Shipley, K. R.: Laboratory experiments on mass transport by
large amplitude mode-2 internal solitary waves, Phys. Fluids, 26,
046601, https://doi.org/10.1063/1.4869101, 2014.
Carr, M., Davies, P. A., and Hoebers, R. P.: Experiments on the structure
and stability of mode-2 internal solitary-like waves propagating on an
offset pycnocline, Phys. Fluids, 27, 046602, https://doi.org/10.1063/1.4916881, 2015.
CMEMS: Global Ocean Physics Reanalysis, GLOBAL_MULTIYEAR_PHY_001_030, Copernicus Marine Environment Monitoring Service [data set],
https://resources.marine.copernicus.eu/product-download/GLOBAL_MULTIYEAR_PHY_001_030, last access: 30 March 2022.
Chen, Z. W., Xie, J., Wang, D., Zhan, J. M., Xu, J., and Cai, S.: Density
stratification influences on generation of different modes internal solitary
waves, J. Geophys. Res.-Oceans, 119, 7029–7046, https://doi.org/10.1002/2014JC010069, 2014.
Cheng, M. H., Hsieh, C. M., Hwang, R. R., and Hsu, J. R. C.: Effects of
initial amplitude and pycnocline thickness on the evolution of mode-2
internal solitary waves, Phys. Fluids, 30, 042101, https://doi.org/10.1063/1.5020093, 2018.
Da Silva, J. C. B., New, A. L., and Magalhaes, J. M.: On the structure and
propagation of internal solitary waves generated at the Mascarene Plateau in
the Indian Ocean, Deep-Sea Res. Pt. I, 58, 229–240, https://doi.org/10.1016/j.dsr.2010.12.003, 2011.
Deepwell, D., Stastna, M., Carr, M., and Davies, P. A.: Wave generation
through the interaction of a mode-2 internal solitary wave and a broad,
isolated ridge, Physical Review Fluids, 4, 094802, https://doi.org/10.1103/PhysRevFluids.4.094802, 2019.
Fan, W., Song, H., Gong, Y., Sun, S., Zhang, K., Wu, D., Kuang, Y., and
Yang, S.: The shoaling mode-2 internal solitary waves in the Pacific coast
of Central America investigated by marine seismic survey data, Cont. Shelf Res., 212, 104318, https://doi.org/10.1016/j.csr.2020.104318, 2021a.
Fan, W., Song, H., Gong, Y., Zhang, K., and Sun, S.: Seismic oceanography
study of mode-2 internal solitary waves offshore Central America, Chinese
J. Geophys.-Ch., 64, 195–208, https://doi.org/10.6038/cjg2021O0071, 2021b.
Fer, I., Nandi, P., Holbrook, W. S., Schmitt, R. W., and Páramo, P.: Seismic imaging of a thermohaline staircase in the western tropical North Atlantic, Ocean Sci., 6, 621–631, https://doi.org/10.5194/os-6-621-2010, 2010.
Fliegel, M. and Hunkins, K.: Internal wave dispersion calculated using the
Thomson-Haskell method, J. Phys. Oceanogr., 5, 541–548,
https://doi.org/10.1175/1520-0485(1975)005<0541:IWDCUT>2.0.CO;2, 1975.
Fulthorpe, C. and McIntosh, K.: Raw Multi-Channel Seismic Shot Data from
the Sandino Basin, offshore Nicaragua, acquired during R/V
Maurice Ewing expedition EW0412 (2004), Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.1594/IEDA/309938, 2014.
Geng, M., Song, H., Guan, Y., and Bai, Y.: Analyzing amplitudes of internal
solitary waves in the northern South China Sea by use of seismic
oceanography data, Deep-Sea Res. Pt. I, 146, 1–10, https://doi.org/10.1016/j.dsr.2019.02.005, 2019.
Gong, Y., Song, H., Zhao, Z., Guan, Y., and Kuang, Y.: On the vertical
structure of internal solitary waves in the northeastern South China Sea,
Deep-Sea Res. Pt. I, 173, 103550, https://doi.org/10.1016/j.dsr.2021.103550, 2021.
Grimshaw, R., Pelinovsky, E., and Poloukhina, O.: Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface, Nonlin. Processes Geophys., 9, 221–235, https://doi.org/10.5194/npg-9-221-2002, 2002.
Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkin, A.: Simulation of
the transformation of internal solitary waves on oceanic shelves, J.
Phys. Oceanogr., 34, 2774–2791, https://doi.org/10.1175/JPO2652.1, 2004.
Holbrook, W. S. and Fer, I.: Ocean internal wave spectra inferred from
seismic reflection transects, Geophys. Res. Lett., 32, L15604,
https://doi.org/10.1029/2005GL023733, 2005.
Holbrook, W. S., Páramo, P., Pearse, S., and Schmitt, R. W.:
Thermohaline fine structure in an oceanographic front from seismic
reflection profiling, Science, 301, 821–824, https://doi.org/10.1126/science.1085116, 2003.
Holbrook, W. S., Fer, I., Schmitt, R. W., Lizarralde, D., Klymak, J. M.,
Helfrich, L. C., and Kubichek, R.: Estimating oceanic turbulence dissipation
from seismic images, J. Atmos. Ocean. Tech., 30,
1767–1788, https://doi.org/10.1175/JTECH-D-12-00140.1, 2013.
Holloway, P. E., Pelinovsky, E., and Talipova, T.: A generalized Korteweg-de
Vries model of internal tide transformation in the coastal zone, J. Geophys. Res.-Oceans, 104, 18333–18350, https://doi.org/10.1029/1999JC900144, 1999.
Krahmann, G., Papenberg, C., Brandt, P., and Vogt, M.: Evaluation of seismic
reflector slopes with a Yoyo-CTD, Geophys. Res. Lett., 36, L00D02,
https://doi.org/10.1029/2009GL038964, 2009.
Kurkina, O., Talipova, T., Soomere, T., Giniyatullin, A., and Kurkin, A.: Kinematic parameters of internal waves of the second mode in the South China Sea, Nonlin. Processes Geophys., 24, 645–660, https://doi.org/10.5194/npg-24-645-2017, 2017.
Lamb, K. G. and Yan, L.: The evolution of internal wave undular bores:
comparisons of a fully nonlinear numerical model with weakly nonlinear
theory, J. Phys. Oceanogr., 26, 2712–2734, https://doi.org/10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2, 1996.
Liao, G., Xu, X. H., Liang, C., Dong, C., Zhou, B., Ding, T., Huang, W., and
Xu, D.: Analysis of kinematic parameters of internal solitary waves in the
northern South China Sea, Deep-Sea Res. Pt. I, 94, 159–172, https://doi.org/10.1016/j.dsr.2014.10.002, 2014.
Liu, A. K., Su, F. C., Hsu, M. K., Kuo, N. J., and Ho, C. R.: Generation and
evolution of mode-two internal waves in the South China Sea, Cont. Shelf Res., 59, 18–27, https://doi.org/10.1016/j.csr.2013.02.009, 2013.
Maderich, V., Jung, K. T., Terletska, K., Brovchenko, I., and Talipova, T.:
Incomplete similarity of internal solitary waves with trapped cores, Fluid
Dyn. Res., 47, 035511, https://doi.org/10.1088/0169-5983/47/3/035511, 2015.
Maxworthy, T.: Experiments on solitary internal Kelvin waves, J. Fluid Mech., 129, 365–383, https://doi.org/10.1017/S0022112083000816, 1983.
McSweeney, J. M., Lerczak, J. A., Barth, J. A., Becherer, J., Colosi, J. A.,
MacKinnon, J. A., MacMahan, J. H., Moum, J. N., Pierce, S. D., and
Waterhouse, A. F.: Observations of shoaling nonlinear internal bores across
the central California inner shelf, J. Phys. Oceanogr., 50,
111–132, https://doi.org/10.1175/JPO-D-19-0125.1, 2020a.
McSweeney, J. M., Lerczak, J. A., Barth, J. A., Becherer, J., MacKinnon, J.
A., Waterhouse, A. F., Colosi, J. A., MacMahan, J. H., Feddersen, F.,
Calantoni, J., Simpson, A., Celona, S., Haller, M. C., and Terrill, E.:
Alongshore variability of shoaling internal bores on the inner shelf,
J. Phys. Oceanogr., 50, 2965–2981, https://doi.org/10.1175/JPO-D-20-0090.1, 2020b.
MGDS: Raw Multi-Channel Seismic Shot Data from the Sandino Basin, offshore Nicaragua, acquired during R/V
Maurice Ewing expedition EW0412 (2004), Marine Geoscience Data System [data set],
http://www.marine-geo.org/tools/search/entry.php?id=EW0412, last access: 30 March 2022.
Olsthoorn, J., Baglaenko, A., and Stastna, M.: Analysis of asymmetries in propagating mode-2 waves, Nonlin. Processes Geophys., 20, 59–69, https://doi.org/10.5194/npg-20-59-2013, 2013.
Pinheiro, L. M., Song, H., Ruddick, B., Dubert, J., Ambar, I., Mustafa, K.,
and Bezerra, R.: Detailed 2-D imaging of the Mediterranean outflow and
meddies off W Iberia from multichannel seismic data, J. Marine Syst., 79, 89–100, https://doi.org/10.1016/j.jmarsys.2009.07.004, 2010.
Ramp, S. R., Yang, Y. J., Reeder, D. B., Buijsman, M. C., and Bahr, F. L.: The evolution of mode-2 nonlinear internal waves over the northern Heng-Chun Ridge south of Taiwan, Nonlin. Processes Geophys., 22, 413–431, https://doi.org/10.5194/npg-22-413-2015, 2015.
Rayson, M. D., Jones, N. L., and Ivey, G. N.: Observations of
large-amplitude mode-2 nonlinear internal waves on the Australian North West
shelf, J. Phys. Oceanogr., 49, 309–328, https://doi.org/10.1175/JPO-D-18-0097.1, 2019.
Ruddick, B., Song, H. B., Dong, C., and Pinheiro, L.: Water column seismic
images as maps of temperature gradient, Oceanography, 22, 192–205,
https://doi.org/10.5670/oceanog.2009.19, 2009.
Sallares, V., Mojica, J. F., Biescas, B., Klaeschen, D., and Gràcia, E.:
Characterization of the sub-mesoscale energy cascade in the Alboran Sea
thermocline from spectral analysis of high-resolution MCS data, Geophys. Res. Lett., 43, 6461–6468, https://doi.org/10.1002/2016GL069782, 2016.
Salloum, M., Knio, O. M., and Brandt, A.: Numerical simulation of mass
transport in internal solitary waves, Phys. Fluids, 24, 016602,
https://doi.org/10.1063/1.3676771, 2012.
Sheen, K. L., White, N. J., and Hobbs, R. W.: Estimating mixing rates from
seismic images of oceanic structure, Geophys. Res. Lett., 36,
L00D04, https://doi.org/10.1029/2009GL040106, 2009.
Sheen, K. L., White, N., Caulfield, C. P., and Hobbs, R. W.: Estimating
geostrophic shear from seismic images of oceanic structure, J. Atmos. Ocean. Tech., 28, 1149–1154, https://doi.org/10.1175/JTECH-D-10-05012.1, 2011.
Shroyer, E. L., Moum, J. N., and Nash, J. D.: Mode 2 waves on the
continental shelf: Ephemeral components of the nonlinear internal wavefield,
J. Geophys. Res.-Oceans, 115, C07001, https://doi.org/10.1029/2009JC005605, 2010.
Small, R. J. and Hornby, R. P.: A comparison of weakly and fully non-linear
models of the shoaling of a solitary internal wave, Ocean Model., 8,
395–416, https://doi.org/10.1016/j.ocemod.2004.02.002, 2005.
Song, H., Chen, J., Pinheiro, L. M., Ruddick, B., Fan, W., Gong, Y., and
Zhang, K.: Progress and prospects of seismic oceanography, Deep-Sea Res. Pt. I, 177, 103631, https://doi.org/10.1016/j.dsr.2021.103631, 2021.
Stamp, A. P. and Jacka, M.: Deep-water internal solitaty waves, J. Fluid Mech., 305, 347–371, https://doi.org/10.1017/S0022112095004654, 1995.
Stastna, M. and Lamb, K. G.: Large fully nonlinear internal solitary waves:
The effect of background current, Phys. Fluids, 14, 2987–2999,
https://doi.org/10.1063/1.1496510, 2002.
Sun, S. Q., Zhang, K., and Song, H. B.: Geophysical characteristics of
internal solitary waves near the Strait of Gibraltar in the Mediterranean
Sea, Chinese J. Geophys.-Ch., 62, 2622–2632,
https://doi.org/10.6038/cjg2019N0079, 2019.
Tang, Q., Wang, C., Wang, D., and Pawlowicz, R.: Seismic, satellite, and
site observations of internal solitary waves in the NE South China Sea,
Sci. Rep., 4, 5374, https://doi.org/10.1038/srep05374, 2014.
Tang, Q., Xu, M., Zheng, C., Xu, X., and Xu, J.: A locally generated
high-mode nonlinear internal wave detected on the shelf of the northern
South China Sea from marine seismic observations, J. Geophys. Res.-Oceans, 123, 1142–1155, https://doi.org/10.1002/2017JC013347, 2018.
Terez, D. E. and Knio, O. M.: Numerical simulations of large-amplitude
internal solitary waves, J. Fluid Mech., 362, 53–82, https://doi.org/10.1017/S0022112098008799, 1998.
Terletska, K., Jung, K. T., Talipova, T., Maderich, V., Brovchenko, I., and
Grimshaw, R.: Internal breather-like wave generation by the second mode
solitary wave interaction with a step, Phys. Fluids, 28, 116602,
https://doi.org/10.1063/1.4967203, 2016.
Tsuji, T., Noguchi, T., Niino, H., Matsuoka, T., Nakamura, Y., Tokuyama, H.,
Kuramoto, S. I., and Bangs, N.: Two-dimensional mapping of fine structures in
the Kuroshio Current using seismic reflection data, Geophys. Res. Lett., 32, L14609, https://doi.org/10.1029/2005GL023095, 2005.
Vlasenko, V., Brandt, P., and Rubino, A.: Structure of large-amplitude
internal solitary waves, J. Phys. Oceanogr., 30, 2172–2185,
https://doi.org/10.1175/1520-0485(2000)030<2172:SOLAIS>2.0.CO;2, 2000.
Xu, J., He, Y., Chen, Z., Zhan, H., Wu, Y., Xie, J., Shang, X., Ning, D.,
Fang, W., and Cai, S.: Observations of different effects of an anti-cyclonic
eddy on internal solitary waves in the South China Sea, Prog.
Oceanogr., 188, 102422, https://doi.org/10.1016/j.pocean.2020.102422, 2020.
Yang, Y. J., Fang, Y. C., Chang, M. H., Ramp, S. R., Kao, C. C., and Tang, T. Y.: Observations of second baroclinic mode internal solitary waves on the
continental slope of the northern South China Sea, J. Geophys. Res.-Oceans, 114, C10003, https://doi.org/10.1029/2009JC005318, 2009.