Articles | Volume 29, issue 2
https://doi.org/10.5194/npg-29-141-2022
Special issue:
https://doi.org/10.5194/npg-29-141-2022
Research article
 | 
04 Apr 2022
Research article |  | 04 Apr 2022

Regional study of mode-2 internal solitary waves at the Pacific coast of Central America using marine seismic survey data

Wenhao Fan, Haibin Song, Yi Gong, Shun Yang, and Kun Zhang

Related authors

Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
Nonlin. Processes Geophys., 31, 477–495, https://doi.org/10.5194/npg-31-477-2024,https://doi.org/10.5194/npg-31-477-2024, 2024
Short summary
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021,https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
Bin Shi and Guodong Sun
Nonlin. Processes Geophys., 30, 263–276, https://doi.org/10.5194/npg-30-263-2023,https://doi.org/10.5194/npg-30-263-2023, 2023
Short summary
Applying dynamical systems techniques to real ocean drifters
Irina I. Rypina, Timothy Getscher, Lawrence J. Pratt, and Tamay Ozgokmen
Nonlin. Processes Geophys., 29, 345–361, https://doi.org/10.5194/npg-29-345-2022,https://doi.org/10.5194/npg-29-345-2022, 2022
Short summary
Observations of shoaling internal wave transformation over a gentle slope in the South China Sea
Steven R. Ramp, Yiing Jang Yang, Ching-Sang Chiu, D. Benjamin Reeder, and Frederick L. Bahr
Nonlin. Processes Geophys., 29, 279–299, https://doi.org/10.5194/npg-29-279-2022,https://doi.org/10.5194/npg-29-279-2022, 2022
Short summary
Enhanced internal tidal mixing in the Philippine Sea mesoscale environment
Jia You, Zhenhua Xu, Qun Li, Robin Robertson, Peiwen Zhang, and Baoshu Yin
Nonlin. Processes Geophys., 28, 271–284, https://doi.org/10.5194/npg-28-271-2021,https://doi.org/10.5194/npg-28-271-2021, 2021
Short summary
Detecting flow features in scarce trajectory data using networks derived from symbolic itineraries: an application to surface drifters in the North Atlantic
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020,https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary

Cited articles

Bai, Y., Song, H., Guan, Y., and Yang, S.: Estimating depth of polarity conversion of shoaling internal solitary waves in the northeastern South China Sea, Cont. Shelf Res., 143, 9–17, https://doi.org/10.1016/j.csr.2017.05.014, 2017. 
Benjamin, T. B.: Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29, 559–592, https://doi.org/10.1017/S002211206700103X, 1967. 
Biescas, B., Sallarès, V., Pelegrí, J. L., Machín, F., Carbonell, R., Buffett, G., Dañobeitia, J. J., and Calahorrano, A.: Imaging meddy finestructure using multichannel seismic reflection data, Geophys. Res. Lett., 35, L11609, https://doi.org/10.1029/2008GL033971, 2008. 
Biescas, B., Armi, L., Sallarès, V., and Gràcia, E.: Seismic imaging of staircase layers below the Mediterranean Undercurrent, Deep-Sea Res. Pt. I, 57, 1345–1353, https://doi.org/10.1016/j.dsr.2010.07.001, 2010. 
Bogucki, D. J., Redekopp, L. G., and Barth, J.: Internal solitary waves in the Coastal Mixing and Optics 1996 experiment: Multimodal structure and resuspension, J. Geophys. Res.-Oceans, 110, C02024, https://doi.org/10.1029/2003JC002253, 2005. 
Download
Short summary
Compared with mode-1 internal solitary waves (ISWs), mode-2 ISWs in the ocean require further study. A mass of mode-2 ISWs developing at the Pacific coast of Central America have been imaged using seismic reflection data. We find that the relationship between the mode-2 ISW propagation speed and amplitude is diverse. It is affected by seawater depth, pycnocline depth, and pycnocline thickness. The ISW vertical amplitude structure is affected by the ISW nonlinearity and the pycnocline deviation.
Special issue