Articles | Volume 28, issue 4
https://doi.org/10.5194/npg-28-599-2021
https://doi.org/10.5194/npg-28-599-2021
Research article
 | 
25 Oct 2021
Research article |  | 25 Oct 2021

Non-linear hydrologic organization

Allen Hunt, Boris Faybishenko, and Behzad Ghanbarian

Related authors

Gaia: Complex systems prediction for time to adapt to climate shocks
Allen G. Hunt, Muhammad Sahimi, Boris Faybishenko, Markus Egli, Zbigniew J. Kabala, Behzad Ghanbarian, and Fang Yu
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-21,https://doi.org/10.5194/esd-2023-21, 2023
Manuscript not accepted for further review
Short summary
Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent
Allen G. Hunt
Nonlin. Processes Geophys., 23, 91–93, https://doi.org/10.5194/npg-23-91-2016,https://doi.org/10.5194/npg-23-91-2016, 2016
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
EGUsphere, https://doi.org/10.5194/egusphere-2024-552,https://doi.org/10.5194/egusphere-2024-552, 2024
Short summary
Stieltjes functions and spectral analysis in the physics of sea ice
Kenneth M. Golden, N. Benjamin Murphy, Daniel Hallman, and Elena Cherkaev
Nonlin. Processes Geophys., 30, 527–552, https://doi.org/10.5194/npg-30-527-2023,https://doi.org/10.5194/npg-30-527-2023, 2023
Short summary
Review article: Scaling, dynamical regimes, and stratification. How long does weather last? How big is a cloud?
Shaun Lovejoy
Nonlin. Processes Geophys., 30, 311–374, https://doi.org/10.5194/npg-30-311-2023,https://doi.org/10.5194/npg-30-311-2023, 2023
Short summary
Brief communication: Climate science as a social process – history, climatic determinism, Mertonian norms and post-normality
Hans von Storch
Nonlin. Processes Geophys., 30, 31–36, https://doi.org/10.5194/npg-30-31-2023,https://doi.org/10.5194/npg-30-31-2023, 2023
Short summary
Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO2 fluxes
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131, https://doi.org/10.5194/npg-29-123-2022,https://doi.org/10.5194/npg-29-123-2022, 2022
Short summary

Cited articles

Aggarwal, P. K., Matsumoto, T., Sturchio, N. S., Chang, H. K., Gastmans, D., Araguas-Araguas, L. J., Jiang, W., Lu, Z..-T., Mueller, P, Yokochi, R., Purtschert, R., and Torgersen, T.: Continental degassing of 4He by surficial discharge of deep groundwater, Nat. Geosci., 8, 35–39, https://doi.org/10.1038/NGEO2302, 2014. 
Albert, J. S., Val, P., and Hoorn, C.: The changing course of the Amazon in the Neogene: center stage for neotropical diversification, Neotrop. Ichthyol., 16, e180033, https://doi.org/10.1590/1982-0224-20180033, 2018. 
Aslan, A., Hood, W. C., Karlstrom, K. E., Kirby, E., Granger, D. E., Kelley, S., Crow, R., Donahue, M. S. Polyak, V., and Asmerom, Y.: Abandonment of Unaweep Canyon, western Colorado: Effects of stream capture and anomalously rapid Pleistocene river incision, Geosphere, 10, 428–446, 2014. 
Baker, V. R., Kochel, R. C., Laity, J. E., and Howard, A. E.: Spring sapping and valley network development, in: GSA Special Paper 252, 235–266, 1990. 
Benaichouche, A., Stab, O., Tessier, B., and Cojan, I.: Evaluation of a landscape evolution model to simulate stream piracies: Insights from multivariable numerical tests using the example of the Meuse basin, Geomorphology, 253, 168–180, https://doi.org/10.1016/j.geomorph.2015.10.001, 2016. 
Download
Short summary
The same power law we previously used to quantify growth of tree roots in time describes equally the assemblage of river networks in time. Even the basic length scale of both networks is the same. The one difference is that the basic time scale is ca. 10 times shorter for drainage networks than for tree roots, since the relevant flow rate is 10 times faster. This result overturns the understanding of drainage networks and forms a basis to organize thoughts about surface and subsurface hydrology.