Articles | Volume 28, issue 4
https://doi.org/10.5194/npg-28-533-2021
https://doi.org/10.5194/npg-28-533-2021
Research article
 | 
14 Oct 2021
Research article |  | 14 Oct 2021

Identification of linear response functions from arbitrary perturbation experiments in the presence of noise – Part 2: Application to the land carbon cycle in the MPI Earth System Model

Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick

Related authors

Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024,https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Identification of linear response functions from arbitrary perturbation experiments in the presence of noise – Part 1: Method development and toy model demonstration
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Nonlin. Processes Geophys., 28, 501–532, https://doi.org/10.5194/npg-28-501-2021,https://doi.org/10.5194/npg-28-501-2021, 2021
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Solid earth, continental surface, biogeochemistry | Techniques: Theory
Modelling of the terrain effect in magnetotelluric data from the Garhwal Himalaya region
Suman Saini, Deepak Kumar Tyagi, Sushil Kumar, and Rajeev Sehrawat
Nonlin. Processes Geophys., 31, 175–184, https://doi.org/10.5194/npg-31-175-2024,https://doi.org/10.5194/npg-31-175-2024, 2024
Short summary
Uncertainties, complexities and possible forecasting of Volcán de Colima energy emissions (Mexico, years 2013–2015) based on a fractal reconstruction theorem
Marisol Monterrubio-Velasco, Xavier Lana, and Raúl Arámbula-Mendoza
Nonlin. Processes Geophys., 30, 571–583, https://doi.org/10.5194/npg-30-571-2023,https://doi.org/10.5194/npg-30-571-2023, 2023
Short summary
Identification of linear response functions from arbitrary perturbation experiments in the presence of noise – Part 1: Method development and toy model demonstration
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Nonlin. Processes Geophys., 28, 501–532, https://doi.org/10.5194/npg-28-501-2021,https://doi.org/10.5194/npg-28-501-2021, 2021
Short summary
An enhanced correlation identification algorithm and its application on spread spectrum induced polarization data
Siming He, Jian Guan, Xiu Ji, Hang Xu, and Yi Wang
Nonlin. Processes Geophys., 28, 247–256, https://doi.org/10.5194/npg-28-247-2021,https://doi.org/10.5194/npg-28-247-2021, 2021
Short summary

Cited articles

Adloff, M., Reick, C. H., and Claussen, M.: Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions, Earth Syst. Dynam., 9, 413–425, https://doi.org/10.5194/esd-9-413-2018, 2018. a, b
Aengenheyster, M., Feng, Q. Y., van der Ploeg, F., and Dijkstra, H. A.: The point of no return for climate action: effects of climate uncertainty and risk tolerance, Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, 2018. a
Alexandrov, G., Oikawa, T., and Yamagata, Y.: Climate dependence of the CO2 fertilization effect on terrestrial net primary production, Tellus B, 55, 669–675, 2003. a, b
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models, J. Climate, 26, 6801–6843, 2013. a
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289–5314, 2013. a, b, c, d, e, f
Short summary
We apply a new identification method to derive the response functions that characterize the sensitivity of the land carbon cycle to CO2 perturbations in an Earth system model. By means of these response functions, which generalize the usually employed single-valued sensitivities, we can reliably predict the response of the land carbon to weak perturbations. Further, we demonstrate how by this new method one can robustly derive and interpret internal spectra of timescales of the system.