Articles | Volume 28, issue 3
https://doi.org/10.5194/npg-28-311-2021
https://doi.org/10.5194/npg-28-311-2021
Research article
 | 
29 Jul 2021
Research article |  | 29 Jul 2021

Comparing estimation techniques for temporal scaling in palaeoclimate time series

Raphaël Hébert, Kira Rehfeld, and Thomas Laepple

Related authors

The Colors of Proxy Noise
Mara Y. McPartland, Thomas Münch, Andrew M. Dolman, Raphaël Hébert, and Thomas Laepple
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-73,https://doi.org/10.5194/cp-2024-73, 2024
Preprint under review for CP
Short summary
LegacyVegetation 1.0: Global reconstruction of vegetation composition and forest cover from pollen archives of the last 50 ka
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-486,https://doi.org/10.5194/essd-2023-486, 2024
Revised manuscript under review for ESSD
Short summary
Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023,https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023,https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
The fractional energy balance equation for climate projections through 2100
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022,https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence
Evgeny Kadantsev, Evgeny Mortikov, Andrey Glazunov, Nathan Kleeorin, and Igor Rogachevskii
Nonlin. Processes Geophys., 31, 395–408, https://doi.org/10.5194/npg-31-395-2024,https://doi.org/10.5194/npg-31-395-2024, 2024
Short summary
Clustering of settling microswimmers in turbulence
Jingran Qiu, Zhiwen Cui, Eric Climent, and Lihao Zhao
Nonlin. Processes Geophys., 31, 229–236, https://doi.org/10.5194/npg-31-229-2024,https://doi.org/10.5194/npg-31-229-2024, 2024
Short summary
Phytoplankton retention mechanisms in estuaries: a case study of the Elbe estuary
Laurin Steidle and Ross Vennell
Nonlin. Processes Geophys., 31, 151–164, https://doi.org/10.5194/npg-31-151-2024,https://doi.org/10.5194/npg-31-151-2024, 2024
Short summary
Fractional relaxation noises, motions and the fractional energy balance equation
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121, https://doi.org/10.5194/npg-29-93-2022,https://doi.org/10.5194/npg-29-93-2022, 2022
Short summary

Cited articles

Benedict, L. H., Nobach, H., and Tropea, C.: Estimation of turbulent velocity spectra from laser Doppler data, Meas. Sci. Technol., 11, 1089–1104, https://doi.org/10.1088/0957-0233/11/8/301, 2000. a
Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sediments, J. Mar. Res., 26, 134–143, 1968. a
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012. a
Bradley, R. S.: Paleoclimatology, 3rd edn., Academic Press, San Diego, https://doi.org/10.1016/C2009-0-18310-1, 2015. a
Cannon, J. W. and Mandelbrot, B. B.: The Fractal Geometry of Nature, Am. Math. Mon., 91, 594–598, https://doi.org/10.2307/2323761, 1984. a, b
Download
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.