Articles | Volume 28, issue 3
Nonlin. Processes Geophys., 28, 311–328, 2021
https://doi.org/10.5194/npg-28-311-2021

Special issue: A century of Milankovic’s theory of climate changes: achievements...

Nonlin. Processes Geophys., 28, 311–328, 2021
https://doi.org/10.5194/npg-28-311-2021
Research article
29 Jul 2021
Research article | 29 Jul 2021

Comparing estimation techniques for temporal scaling in palaeoclimate time series

Raphaël Hébert et al.

Related authors

Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Raphaël Hébert, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-127,https://doi.org/10.5194/egusphere-2022-127, 2022
Short summary
The fractional energy balance equation for climate projections through 2100
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022,https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Variability of surface climate in simulations of past and future
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020,https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
The ScaLIng Macroweather Model (SLIMM): using scaling to forecast global-scale macroweather from months to decades
S. Lovejoy, L. del Rio Amador, and R. Hébert
Earth Syst. Dynam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015,https://doi.org/10.5194/esd-6-637-2015, 2015
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Fractional relaxation noises, motions and the fractional energy balance equation
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121, https://doi.org/10.5194/npg-29-93-2022,https://doi.org/10.5194/npg-29-93-2022, 2022
Short summary

Cited articles

Benedict, L. H., Nobach, H., and Tropea, C.: Estimation of turbulent velocity spectra from laser Doppler data, Meas. Sci. Technol., 11, 1089–1104, https://doi.org/10.1088/0957-0233/11/8/301, 2000. a
Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sediments, J. Mar. Res., 26, 134–143, 1968. a
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012. a
Bradley, R. S.: Paleoclimatology, 3rd edn., Academic Press, San Diego, https://doi.org/10.1016/C2009-0-18310-1, 2015. a
Cannon, J. W. and Mandelbrot, B. B.: The Fractal Geometry of Nature, Am. Math. Mon., 91, 594–598, https://doi.org/10.2307/2323761, 1984. a, b
Download
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.