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Abstract. Characterizing the variability across timescales
is important for understanding the underlying dynamics of
the Earth system. It remains challenging to do so from
palaeoclimate archives since they are more often than not
irregular, and traditional methods for producing timescale-
dependent estimates of variability, such as the classical pe-
riodogram and the multitaper spectrum, generally require
regular time sampling. We have compared those traditional
methods using interpolation with interpolation-free methods,
namely the Lomb–Scargle periodogram and the first-order
Haar structure function. The ability of those methods to pro-
duce timescale-dependent estimates of variability when ap-
plied to irregular data was evaluated in a comparative frame-
work, using surrogate palaeo-proxy data generated with real-
istic sampling. The metric we chose to compare them is the
scaling exponent, i.e. the linear slope in log-transformed co-
ordinates, since it summarizes the behaviour of the variabil-
ity across timescales. We found that, for scaling estimates
in irregular time series, the interpolation-free methods are
to be preferred over the methods requiring interpolation as
they allow for the utilization of the information from shorter
timescales which are particularly affected by the irregularity.
In addition, our results suggest that the Haar structure func-
tion is the safer choice of interpolation-free method since the
Lomb–Scargle periodogram is unreliable when the underly-
ing process generating the time series is not stationary. Given
that we cannot know a priori what kind of scaling behaviour
is contained in a palaeoclimate time series, and that it is also

possible that this changes as a function of timescale, it is a de-
sirable characteristic for the method to handle both stationary
and non-stationary cases alike.

1 Introduction

Palaeoclimate archives are crucial for improving our under-
standing of climate variability on decadal to multi-centennial
timescales and beyond (Braconnot et al., 2012). They pro-
vide independent data for the evaluation of the climate mod-
els which are used to project future climate change. To this
end, quantitative estimates of variability based on palaeocli-
mate records allow us to compare past changes in variance
over a wide range of timescales (e.g. Laepple and Huybers,
2014b, a; Rehfeld et al., 2018; Zhu et al., 2019) and to com-
pare how variance is distributed across different timescales
(e.g. Mitchell, 1976; Huybers and Curry, 2006; Lovejoy,
2015; Nilsen et al., 2016; Shao and Ditlevsen, 2016).

We generally refer to scaling as the statistical charac-
terization of the changes in climate variability as a func-
tion of timescale τ or, equivalently, as a function of fre-
quency f , such that f = τ−1. The term scaling often im-
plies, although not necessarily, power law scaling. A stochas-
tic process is said to be power law scaling over a range of
timescales [τ1,τ2] if a timescale-dependent statistical metric
S(τ) approximately follows a power law relationship such
that S(τ)∝ τ a , where a is a general power law scaling ex-
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ponent. Therefore, the power spectrum of such processes
will appear linear on a log-log plot over a given range of
timescales (Percival and Walden, 1993). The corresponding
power law scaling exponent can be informative of the under-
lying dynamics of the system, such as the degree of tempo-
ral auto-correlation, i.e. the system’s memory (Mandelbrot
and Wallis, 1968; Lovejoy et al., 2015; Graves et al., 2017;
Fredriksen and Rypdal, 2015; Del Rio Amador and Lovejoy,
2019). While assuming power law scaling may be a simpli-
fication, it is a rather accurate first-order description for a
vast range of geophysical processes (Cannon and Mandel-
brot, 1984; Pelletier and Turcotte, 1999; Malamud and Tur-
cotte, 1999; Fedi, 2016; Corral and González, 2019).

Methods used for scaling analysis generally assume that
the process under investigation has been sampled at regular
time steps. This is appropriate for some instrumental obser-
vations and annually resolved palaeoclimate archives such
as tree and coral rings. However, since most palaeoclimate
archives are the product of slow and intermittent accumu-
lation in sediments or ice sheets, sampling them at regular
depth intervals translates to irregular time intervals (Bradley,
2015). In addition, the irregular accumulation process usu-
ally has to be reconstructed and necessarily introduces age
uncertainty (Rehfeld and Kurths, 2014), although it does not
affect the scaling estimates strongly (Rhines and Huybers,
2011).

Therefore, the primary challenge is that scaling analysis
methods need to be adapted for the analysis of sparse and
irregular series. There are two approaches to this problem
that can be distinguished.

First, an interpolation routine can be employed prior to
the analysis in order to regularize the series. Once the se-
ries are regular, traditional methods such as the classical pe-
riodogram (CPG; Schuster, 1898; see Table 1 for a list of all
the acronyms used in this paper) or the multitaper spectrum
method (MTM; Thomson, 1982) can be used. See this ap-
proach used in a palaeoclimatology context in Huybers and
Curry (2006), Laepple and Huybers (2014a, b) and Rehfeld
et al. (2018) and an implementation of these methods in R for
regular climate data, including functions for statistical test-
ing, scaling exponent estimation and trend estimations for
different residual models provided by Vyushin et al. (2009).

Second, the estimator can be adjusted for arbitrary sam-
pling times. The so-called Lomb–Scargle periodogram (LSP;
Lomb, 1976; Scargle, 1982; Horne and Baliunas, 1986; Van-
derPlas, 2018) was developed in the field of astronomy to
identify periodic components in noisy astronomical time se-
ries with sampling hiatus and was often used to analyze laser
Doppler velocimetry experiments, which produce irregularly
sampled velocity data (Benedict et al., 2000; Munteanu et al.,
2016; Damaschke et al., 2018), and for the detection of
biomedical rhythms (Schimmel, 2001). The LSP has some-
times been used in a palaeoclimatological context (Schulz
and Stattegger, 1997; Trauth, 2020), although it may intro-
duce additional bias and variance (Schulz and Stattegger,

1997; Schulz and Mudelsee, 2002; Rehfeld et al., 2011).
More recently, Lovejoy and Schertzer (2012) advocated for
the use of the Haar structure function (HSF), based on Haar
wavelets (Haar, 1910), in geophysics due to its ease of inter-
pretation and accuracy. Incidentally, the HSF can easily be
adapted for irregular time series.

Another method which is often used for scaling analysis is
the detrended fluctuations analysis (DFA Peng et al., 1995;
Kantelhardt et al., 2001, 2002), which has also been applied
to climatic and palaeoclimatic time series (Koscielny-Bunde
et al., 1996; Rybski et al., 2006; Shao and Ditlevsen, 2016).
However, a prestudy showed that it was less efficient for ir-
regular time series, and we decided to omit it for clarity. In
addition, it underestimates variance at any given timescale
because of the necessary detrending (Nilsen et al., 2016), and
it is therefore of limited use beyond the estimation of scaling
exponents.

In the present work, we compare the different methods for
the scaling of variability and make them accessible in a sin-
gle software package. Our main aim is to assess their abil-
ity to estimate variability across timescales in a palaeocli-
matological context which often entails scarce and irregular
time series. In order to benchmark the methods, we evalu-
ate them on surrogate data with known properties similar to
those of palaeoclimate records without abrupt transitions. Fi-
nally, we apply the methods to a database comprising Last
Glacial maximum (LGM) and Holocene records to evaluate
their performances on real data.

2 Data and methods

In this section, we outline the different methods considered to
evaluate scaling and how they can be compared. We also pro-
vide a method to generate palaeo-proxy surrogate data with
realistic variability and sampling, which is then used to test
and compare the scaling methods.

2.1 Scaling estimation methods

Scaling generally refers to the behaviour of a quantity S(τ)
as a function of scale τ (or frequency f such that f = τ−1)
for a given process X(t). In the current work, we exclusively
consider time series, but the same methods can be used to
investigate spatial scaling relationships. The quantity S(τ)
considered can be the statistical moments of an appropriately
defined fluctuation1X, such as the power spectral density or
Haar fluctuations. It is usual to assume such a form to define a
structure function for the statistical moments (Schertzer and
Lovejoy, 1987; Lovejoy and Schertzer, 2012) of the process
under investigation as follows:

S1X,q(X,τ)= 〈1X
q
j,τ 〉 ∝ τ

ξ(q), (1)

where “〈 . . . 〉” denotes ensemble averaging over all fluctua-
tions j available at the given scale τ , q is the statistical mo-
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Table 1. Table of acronyms used in this paper and references.

Acronym Long name Key reference

CPG Classical periodogram Schuster (1898)
LSP Lomb–Scargle periodogram Lomb (1976), Scargle (1982)
MTM Multitaper spectrum method Thomson (1982)
HSF First-order Haar structure function Lovejoy and Schertzer (2012)
DFA Detrended fluctuations analysis Peng et al. (1995)
LGM Last Glacial maximum CLIMAP Project Members (1976)
fGn Fractional Gaussian noise Mandelbrot and Van Ness (1968)
fBm Fractional Brownian motion Mandelbrot and Van Ness (1968)

ment (i.e. q = 1 corresponds to the mean, q = 2 to the vari-
ance, q = 3 to the skewness and so on), and ξ(q)= qH −
K(q) is the exponent function, where H is the fluctuation
scaling exponent and K(q) is the moment scaling function.
K(q) is zero for some monofractals such as the well-studied
case of Gaussian processes and, thus, for these specific cases,
all statistical moments scale similarly, i.e. ξ(q)∝ qH .

The equivalent metric for the power spectrum method is
the spectral scaling exponent β (see Sect. 2.1.1 for a formal
definition). The two scaling exponents can be related by the
following:

β = 1+ 2H −K(2), (2)

where K(q) at q = 2 is used since the spectrum is a second-
order statistic. This relation can be understood intuitively
since β describes the scaling of the power spectral density
obtained via the Fourier transform of the auto-covariance
function, whereas H describes the scaling of the real space
fluctuations. Therefore, since the auto-covariance is propor-
tional to the expectation value of the (zero mean) time series
squared, the exponent H is multiplied by two, while the in-
tegration in the definition of the Fourier transform increases
the scaling exponent by +1.

In this work, we will focus on the (monofractal) quasi-
Gaussian case, i.e. when statistics approximately follow the
Gaussian distribution, in order to minimize the number of
estimated parameters. Palaeoclimate archives often lack the
resolution and/or length to estimate many parameters with
confidence. This assumption is rather well justified for tem-
perature and precipitation time series at timescales longer
than the turbulent weather regime (i.e. timescales longer
than weeks or a few years, depending on the location and
medium; Lovejoy and Schertzer, 2012), but it is unclear over
what range of time and timescales it may hold. For a series
on glacial–interglacial timescales comprising a Dansgaard–
Oeschger event, multifractality has been observed (Schmitt
et al., 1995; Shao and Ditlevsen, 2016), and the Gaussian ap-
proximation does not hold. This is also the case for highly in-
termittent archives which clearly display multifractality, such
as volcanic series (Lovejoy and Varotsos, 2016) or dust flux
(Lovejoy and Lambert, 2019), which would also require the

intermittency correction from the moment scaling function
K(q).

Under the quasi-Gaussian assumption, we can simplify
Eq. (2) since this implies K(2)≈ 0 and, therefore, the fol-
lowing:

β ≈ 1+ 2H . (3)

This allows us to convert estimated β̂ (where ∧ denotes an es-
timator for the given quantity) into their equivalent estimated
fluctuation scaling exponents Ĥ . We use the fluctuation scal-
ing exponent H for intercomparison between the methods in
this study. H is a natural choice as it directly describes the
behaviour of fluctuations in real space and is the usual pa-
rameter in functions for generating fractional noises (Man-
delbrot and Van Ness, 1968; Mandelbrot, 1971; Molz et al.,
1997). While the fluctuation exponent H takes its origin in
the so-called Hurst exponent (Hurst, 1956), its meaning and
definition have evolved and changed over time (see Graves
et al. (2017) and Lovejoy et al. (2021) for historical sum-
maries).

The process for estimating the scaling exponents can be di-
vided into three steps. First, if the series is irregularly spaced,
it requires regularization in order to be usable for the CPG
and the MTM. The regularization is not necessary for the
HSF and the LSP, which have the advantage that they can be
calculated directly on the irregular time series. Second, the
fluctuations proper to each method are calculated as a func-
tion of timescale, and finally, the scaling exponent is fitted on
the result.

2.1.1 Power spectrum

For an ergodic, weakly stationary stochastic process, the
power spectrum P of a single realization X is given by
the Fourier transform of the auto-covariance function γ and,
equivalently, the squared Fourier transform of the signal, as
follows (von Storch and Zwiers, 1984):

P(τ)=
|F{X}|2

T
= F(γ {X}) , (4)

where τ is the timescale, T is the temporal coverage of X,
and F denotes the Fourier transform operator. Equivalently,
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the power spectrum can be given as a function of the fre-
quency f = τ−1 instead of the timescale τ . We choose to
write it as a function of timescale to allow for a visual com-
parison with the Haar method below, and also because it is
more intuitive; a non-expert can easily grasp what the 1000-
year timescale means rather than the equivalent 0.001-year−1

frequency.

Classical periodogram

The power spectrum for a discrete process X with N time
steps at regular intervals τ0 can be estimated using the clas-
sical periodogram as follows (Chatfield, 2013):

P̂C(τ )=
1
πN

∣∣∣∣∣ N∑
t=1

Xte
−2πiτ0t

τ

∣∣∣∣∣
2

. (5)

If log(P (τ)) behaves linearly over a range of log-
transformed timescales log(τ ), the time series is consid-
ered to be power law scaling over this timescale band, i.e.
P(τ)≈ Aτβ for an arbitrary constant A.

Multitaper spectrum

The MTM method improves upon the CPG by producing in-
dependent estimates using a set of orthogonal functions. The
prolate spheroidal wave functions ht,k (Slepian and Pollak,
1961), also known as the Slepian tapers, have the desirable
property of minimizing spectral leakage (Thomson, 1982).
The spectral individual estimates for the kth taper can be
written in a form similar to the periodogram above, as fol-
lows:

P̂k(τ )=
1
πN

∣∣∣∣∣ N∑
t=1

hk,tXte
−2πiτ0t

τ

∣∣∣∣∣
2

. (6)

The estimator can then be expressed as the mean of the K
tapered estimates as follows:

P̂MT(τ )=
1
K

K−1∑
k=0

P̂k(τ ). (7)

Interpolation

To produce the power spectrum with the methods above, it
is necessary to interpolate the series at a regular resolution.
Following Laepple and Huybers (2013), the data were first
linearly interpolated to 10 times the mean resolution and then
low-pass filtered, using a finite response filter with a cut-off
frequency of 1.2 divided by the target mean resolution in or-
der to avoid aliasing. Linear interpolation corresponds to a
convolution in the temporal domain with a triangular win-
dow. The Fourier transform of the triangular window is sinc2,
where the sinc function is defined as sinc= x−1 sin(x), and

therefore, a linear interpolation multiplies the power spec-
trum by sinc4 modulated by the resolution of the interpola-
tion (Smith, 2011), resulting in a power loss near the Nyquist
frequency.

Lomb–Scargle periodogram

As an alternative to the classical periodogram which requires
regular data, Scargle (1982) introduced the LSP as a gener-
alized form of the CPG, as follows (Eq. 5):

P̂LS(τ )=
A2

2

[
N∑
j

X(tj )cos
2π(tj − T )

τ

]2

(8)

+
B2

2

[
N∑
j

X(tj )sin
2π(tj − T )

τ

]2

, (9)

where A, B and T are arbitrary functions of timescale τ
and sampling times tj , which can be irregular. We see that,

if A= B =
√

2
N

and T = 0, we would recover the classical
periodogram in case of regular sampling, but the reduction
is not unique and other choices of A and B can be made.
The periodogram estimates are chi-squared distributed with
2 degrees of freedom (i.e. an exponential distribution), and
therefore, A and B will be chosen to retain this property. For
independent and identically distributed white noise, it is the
case when, as in the following:

A(τ, tj )=

√√√√ N∑
j

cos2 2πtj
τ
, (10)

B(τ, tj )=

√√√√ N∑
j

sin2 2πνtj
τ

. (11)

The CPG is invariant to time translation since shifting the
time steps by a constant value only affects the phase of the
complex exponential inside the absolute value. The function
T is thus introduced for the generalized periodogram to re-
tain that property, which is the case when, as in the following:

T (τ, tj )=
τ

4π
tan−1


N∑
j

sin4πτ−1tj

N∑
j

cos4πτ−1tj

 . (12)

The LSP has been mostly used in astronomy to detect pe-
riodic components in noisy irregular data. As outlined above,
the functions A and B are chosen following the assumption
that the process X is approximately white noise with no tem-
poral correlation. This assumption is, of course, problematic
from the perspective of climate time series which usually
exhibit long-range temporal correlations, but as we will see
later, good estimates of scaling exponents can nonetheless be
recovered over a wide range of H .
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2.1.2 Haar structure function

The HSF allows us to perform the scaling analysis in real
space, i.e. without performing a Fourier transform. When
used to define a structure function, Haar wavelets are appro-
priate for estimating the fluctuation exponent of processes
with H ∈ (−1,1) (Lovejoy and Schertzer, 2012), a range
covering most geophysical processes. Therefore, and also be-
cause of its readiness to be applied to irregular series and its
ease of interpretation, Lovejoy and Schertzer (2012) argued
that it makes it a convenient choice for the scaling analysis
of geophysical time series.

Haar fluctuations H are simple to implement for irregular
sampling. They can be defined for a given interval of length
τ as the difference between the mean of the first half of the
interval with the second half, as follows:

Hτ,j (X(ti))

=
2
τ

∣∣∣∣ ∑
tj+

τ

2
< ti < tj + τ

X(ti)−
∑

tj<ti<tj+
τ

2

X(ti)

∣∣∣∣. (13)

The discrete sampling ti does not have to be regular since
the average of the available fluctuations in the intervals is
taken. This is, of course, an approximation since the fluctua-
tions available might not exactly correspond to the expected
timescale.

The first-order HSF SH,q=1 can now be defined by using
the Haar fluctuation defined in equation 1 and letting q = 1,
as follows:

SH,q=1(X(t),τ )= 〈Hτ,j (X(t))〉 ≈ Aτ
H . (14)

Higher-order structure functions can be defined by consider-
ing other values of q and can be used to analyze multifractal
processes, but since we are only dealing with the (monofrac-
tal) quasi-Gaussian case in this paper, q = 1 is sufficient. For
simplicity, we refer to the first-order HSF simply as HSF.

Since we are taking the average value of the absolute of
the fluctuations, if the fluctuations are distributed in a quasi-
Gaussian fashion, then we expect the distribution of Haar
fluctuations at each scale to be a half-normal distribution,
i.e. a zero-mean Gaussian distribution folded along zero. The
mean µHG of such half-Gaussian distribution, which can be
obtained by taking the absolute of a Gaussian distribution,
is proportional to the standard deviation σG of the original

Gaussian distribution, i.e. µHG =

√
2
π
σG. Since the sign of

the Haar fluctuation before taking the absolute is arbitrary,
we can also consider the negative of those fluctuations to
create an ensemble which is even closer to a Gaussian dis-
tribution and has mean equal zero by construction. We then
estimate the mean absolute Haar fluctuation using the defini-
tion with the standard deviation given above. This procedure
marginally improves the estimation procedure over directly
taking the average of the absolute of the Haar fluctuations
available.

2.1.3 Slope estimation

For a power law relationship between variables x and y, such
as y = AxB , it is usual to use standard least square fitting to
find the coefficient A and the exponent B as the linear coef-
ficients of the equivalent linear relationship after taking the
logarithm of the equation, such that logy = B logx+ logA.
Least square fitting assumes the residuals are normally dis-
tributed, which is often a good approximation for the loga-
rithm of the power spectral density of a stochastic process at
a given frequency.

In the case of stationary Gaussian processes, it can be
shown that the CPG and LSP estimates at a given timescale
are distributed like a chi-square distribution with degrees of
freedom equal to 2 (i.e. an exponential distribution), and for
the MTM, it is approximately twice the number of tapers, al-
beit slightly less depending on their degree of dependence.
The logarithm of the distributions mentioned above is simi-
lar enough to a normal distribution to obtain reasonable es-
timates with an ordinary least-square fit. Another option is
to use a generalized linear model with a gamma distribution
model of which the chi-square is a special case. While very
similar results are obtained for both fitting methods, we chose
the generalized linear model method, since it is theoretically
more justified.

For a Gaussian process, the first-order Haar fluctuations
will follow a normal distribution, but as we are fitting the
absolute value of the fluctuations, the estimates at a given
timescale will follow a half-normal distribution, as men-
tioned above. Although the half-normal distribution is not a
specific case of the gamma distribution but rather the gener-
alized gamma distribution, we also use the generalized linear
model to estimate its scaling exponent for practical purposes.

Timescale band for slope estimation

For all methods, we need to select a range of timescales over
which to estimate the scaling exponent using the general-
ized linear model. The maximum fitting timescale τmax used
was always one-third of the largest scale available in order
to maximize the range of timescales used, while avoiding the
longer timescales which have poor statistics, in the case of
the HSF (Lovejoy and Schertzer, 2012), and underestimate
variance, in the case of the MTM because of its known bias
(Prieto et al., 2007) and the usual linear detrending. Since the
impact of irregularity is not important at long timescales, we
chose this same τmax for all methods for consistency. The op-
timal minimum timescale τmin, on the other hand, can vary,
depending on the method used, and requires careful treat-
ment.

For the CPG and the MTM, we fitted above the timescale
corresponding to the Nyquist frequency, i.e. twice the resolu-
tion, for regular series. In the case of irregular data, since the
interpolation brings about a power loss at small timescales
(Schulz and Stattegger, 1997; Rhines and Huybers, 2011;
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Kunz et al., 2020), fitting over the small timescales produces
a positive bias on the slope estimation. Therefore, when es-
timating the scaling exponents for the irregular series, we
consistently fitted above 3 times the mean resolution τµ as
a compromise (i.e. 1.5 times the Nyquist frequency). This
choice of τmin was informed (as for the methods below) from
the results using the palaeoclimate database (see Sect. 3.3).

For both the HSF and LSP, we used twice the resolution
as τmin for the regular cases, and we used τmin = 2τµ for the
irregular cases.

2.2 Evaluation of the estimators

2.2.1 Surrogate data

To test the methods, we produce surrogate data with the same
characteristic as the palaeoclimate archives, namely a given
scaling behaviour and an irregular sampling in time.

Simulation of power law noise

A classical example of a non-stationary process (H > 0) is
normal Brownian motion (H = 1

2 ), which is produced by (in-
teger order) integration of a normal Gaussian white noise
(H =− 1

2 ). A process with a given scaling behaviour can
be obtained by fractional, rather than integer, order integra-
tion (or differentiation) of a given set of innovations, i.e. a
random series of uncorrelated values obtained from a cer-
tain distribution. To generate our surrogate data, we consider
the simplest case for which the innovations are drawn from a
normal Gaussian distribution. This leads to the classical frac-
tional Gaussian noise (fGn) and fractional Brownian motion
(fBm; Mandelbrot and Van Ness, 1968; Mandelbrot, 1971;
Molz et al., 1997). For any fGn process, there is a related
fBm process which can be obtained by (integer order) in-
tegration, which increases the scaling exponent of the pro-
cess by +1. It is usual to define the associated fGn and fBm
processes by the same scaling exponent h ∈ (0,1), which di-
rectly describes the scaling behaviour of the HSF for the fBm
or for the fGn after (integer order) integration. However, it
is inconvenient to use the same parameter for both fGn and
fBm when considering them in a common framework, and
we prefer to also identify the fGn by the scaling behaviour
of its HSF rather than that of its integral, such that it has
H ∈ (−1,0). In the current paper, we generally refer to both
fGn and fBm as “fractional noise” described by an exponent
H ∈ (−1,1). They are generated using an algorithm devel-
oped by Franzke et al. (2012).

Series with H ∈ (−0.5,−0.3) are typical of monthly land
air surface temperature up to decadal timescales, while series
with H ∈ (−0.3,0) are more typical of sea surface tempera-
ture over similar timescales. Non-stationary behaviour with
H > 0 is typically observed in pre-Holocene series compris-
ing Dansgaard–Oeschger events (Nilsen et al., 2016).

Generation of irregular palaeo-series

To produce irregularly sampled series akin to palaeoclimate
archives, an annual resolution series with a given scaling ex-
ponent is first produced, with the above method, and then
degraded at the desired resolution using two different meth-
ods. The first one is to simply block average, and the second
one is to subsample a low-pass filtered version of the series.

For the block averaging method, boundaries are deter-
mined as the midpoint between subsequent time steps, and
all data in between are averaged. This corresponds, in the
temporal domain, to a convolution with a square window,
or, equivalently in the Fourier domain, to a multiplication
of the Fourier transform with the sinc function (sinc(x)=
x−1 sin(x)). Therefore, the power spectrum is multiplied by
a sinc2, and this brings about a loss of power at the high fre-
quencies. For the second method, the timescale of the low-
pass filter is taken as twice the mean resolution of the series,
and the filtered series is simply subsampled at the desired
time steps. In the frequency domain, the filtering corresponds
to multiplying the spectrum by a square function, which cuts
off variability below the specified timescale, and therefore,
this is useful for reducing the aliasing of higher frequencies.

The first method would correspond to an archive sampled
without gaps and where there is no smoothing of the sig-
nal, for example speleothem and varved sediments, if sam-
ples containing several layers are taken or marine records
when the sample distance is smaller than the typical mix-
ing depth in the sediment (Berger and Heath, 1968). The
second method would correspond to archives with spaced-
out sampling (for example, 1 cm every 10 cm) and including
processes such as bio-turbation and diffusion which smooth
out the high-frequency signal, for example biochemical and
ecological data extracted from sediment cores (Dolman and
Laepple, 2018; Dolman et al., 2021). We show the second
method as our main result, since it is more common to have
archives with such smoothing processes, but also because it
removes most of the aliasing effect from our results. It, there-
fore, leaves a clearer picture of the other effects inherent to
each method. It is, however, an idealization since the smooth-
ing timescale of the physical processes involved is not related
to the resolution; it should be independently estimated and
accounted for in applied studies, although it is seldom re-
ported. All the results were also computed for the block av-
erage method and are shown in the Supplement (Figs. S1–S5
and S7–S10).

Previous studies have shown that the distribution of sam-
pling times for typical sedimentary records can be approxi-
mated by a gamma distribution (Reschke et al., 2019a). To
systematically test the impact of increasingly irregular sam-
pling, we thus draw the time steps from a gamma distribution
defined by its shape parameter k (or skewness ν, such that
k = ν−1) and mean parameter µ which corresponds to the
mean time step τµ. When the skewness parameter is ν = 0,
then we have regular sampling of width µ. Figure 1 shows an
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example of such a surrogate series at annual resolution and
an irregularly degraded version (with time steps drawn from
a gamma distribution with ν = 1), along with the results of
applying the three scaling estimation methods considered for
the main analysis, i.e. the MTM, the HSF and the LSP. We
omit a discussion of the results computed using the CPG as
they are generally very similar to those of the MTM, albeit
with higher variance.

2.2.2 Performance metrics and performance plots

Our aim is to evaluate how the different methods perform in
the estimation of scaling exponents for irregularly sampled
palaeoclimate dataX(t), with different scaling behaviour and
of variable length and irregularity. In order to assess the ac-
curacy and precision of our scaling exponent estimator Ĥ for
a given set of parameters, we generate an ensemble of sur-
rogate data X̂(t) and analyze its statistics. We evaluate three
measures, namely the bias B for the accuracy of the estima-
tor Ĥ with respect to the input H , the standard deviation σ
for the precision of the estimator and the root mean square
error (RMSE), which combines both previous measures as
follows:

B = 〈Ĥ 〉−H (15)

σ =

√
〈Ĥ 2〉− 〈Ĥ 〉2 (16)

RMSE2
= B2

+ σ 2. (17)

We exploited the geometric relation between the three to eas-
ily visualize the results. We summarize the results for a set
of parameters by one point on a bias–standard deviation di-
agram (Fig. 4), where the x axis gives the bias, the y axis
the standard deviation and the distance from the origin then
corresponds to the root mean square error. The bias and stan-
dard deviation for each combination are calculated from a
large ensemble of surrogate data (10 000 realizations).

2.3 Data

In order to test the methods with the sampling properties of
typical palaeo-proxy data, we consider an available database
of marine and terrestrial proxy records for temperature (Re-
hfeld et al., 2018), which was also used for signal-to-noise
ratio assessments by Reschke et al. (2019b). Each of the 99
sites covers at least 4000 years in the interval of the Holocene
(8–0 kyr ago; 88 time series in total) and/or the LGM (27–
19 kyr ago; 39 time series total) at a mean sampling inter-
val of 225 years or lower. These records are irregularly sam-
pled in time and come with different sampling characteristics
(Fig. 2).

3 Results

Using the methods described above to generate synthetic
data, we can evaluate the ability of each method to recover

the input scaling exponents. For each method, we calculate
the bias and standard deviation over the ensembles of surro-
gate data, for inputH between−0.9 and 0.9 in increments of
0.1. This wide range of H values covers all values encoun-
tered later in the multiproxy database; the vast majority of
climatic series even fall within an even more restricted range
of H ∈ [−0.5,0.5]. First, we consider the ideal case of reg-
ular sampling, then we study the effect of irregular sampling
and finally, the impact of the length of the time series.

3.1 Effect of regular and irregular sampling

We evaluate the estimators for four cases pertaining to the
resolution of the data and always a fixed length of 128 data
points (Figs. 3 and 4). The first case considers annual data,
which was directly simulated and not degraded afterwards; it
is, therefore, regular. It is shown for comparison with the sec-
ond case, where we simulate 5120-year-long series and then
degrade them to 40-year resolution. This allows us to study
the impact of the degrading method, which is necessary for
producing irregular series. The third and fourth cases deal
with series of 128 irregular time steps drawn from a gamma
distribution with skewness ν = 0.5 and ν = 1, respectively,
and a mean parameter of 40 years so that the resulting series
have the same mean resolution as the second (regular) case.
To illustrate the contribution of different frequency ranges to
the precision and accuracy of the estimators, the scaling ex-
ponents were also fit on subranges of equal width in the log
of the timescales, which we refer to as the shorter timescales,
the intermediate timescales and the longer timescales, cor-
responding to, respectively, 2–9.2 τµ, 4.3–19.9 τµ and 9.2–
42.7 τµ, where τµ is the mean resolution of the time series
(Fig. 5).

For the annual data series, the scaling exponentH can gen-
erally be recovered for all values of H ∈ [−0.9,0.9], with a
standard deviation below 0.13 and an absolute bias less than
0.06 (Fig. 4; top left), except for the LSP whenH >−0.1, as
it increasingly underestimates higher values of H . The small
bias observed in the MTM and LSP estimates stems from
the shorter timescales (Fig. 5), which are sensitive to alias-
ing of the power below the Nyquist frequency, and, there-
fore, the measured scaling slope of series with negative β
(i.e. H <−0.5) are biased high, whereas increasingly neg-
ative bias is obtained for increasingly positive values of β
(H >−0.5). It follows that the flat case of β = 0 (H =−0.5)
is unbiased by aliasing since the aliased power is likewise
flat. The HSF-based estimates also have a significant bias in
the other direction when the series considered have an input
H decreasing below H =−0.5 (Fig. 3).

The second case of regular 40-year series yields similar
results to the previous case, although there is no more alias-
ing since we subsampled the 5120-year-long series at 40-
year intervals after an 80-year low-pass filter was applied
(Fig. 4; top right). The MTM returns a consistent estimate
with a variance which remains almost constant over the range
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Figure 1. (a, e, i, m, q, u) Surrogate time series generated with a given H are shown at annual resolution (brown), degraded to a regular
50-year resolution (blue) and degraded to an irregular and random spacing drawn out of a gamma distribution, with skewness ν = 1 and a
mean of 50 years. (b, f, j, n, r, v) Shown are the mean power spectra, estimated using the MTM of 100 realizations of surrogate time series,
generated as in the first column and shown with the same colour scheme. The irregular case is also shown after dividing the power spectra
by the expected sinc4 bias due to interpolation (dashed pink line). Also shown are the bounds for the fitting range considered later (vertical
dashed blue line) at the Nyquist frequency corresponding to 100 years, at 1.5 times the Nyquist frequency corresponding to 150 years and
at one-third of the length of the time series at 2000 years. (c, g, k, o, s, w) Same as the second column but for the LSP instead of the MTM.
(d, h, l, p, t, x) Same as the second column but showing HSF instead of MTM power spectra.
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Figure 2. Sampling characteristics of the 127 palaeoclimate time series (Rehfeld et al., 2018). The 88 Holocene series (teal) and 39 Last
Glacial maximum series (pink) are evaluated along the following characteristics: (a) the skewness ν of the distribution of time steps, (b) the
number of points, i.e. samples, and (c) the mean resolution τµ of the time steps.

Figure 3. Mean estimate 〈Ĥ 〉 from the surrogate time series with input values of H ∈ (−1,1) (i.e. β ∈ (−1,3)). Deviations from the one-
to-one line (dashed grey) correspond to the bias B of the mean estimate 〈Ĥ 〉. Different types of data are evaluated, namely (a) regular
annual data, i.e. it was directly simulated and not degraded after, (b) regular surrogate data degraded at regular 40-year intervals and irregular
surrogate data with time steps drawn from a gamma distribution with (c) skewness ν = 0.5 or (d) skewness ν = 1.
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Figure 4. Bias–standard deviation diagram for ensembles of H estimate surrogate time series, with input values of H ∈ (−1,1) (i.e. β ∈
(−1,3)). Different types of data are evaluated, namely (a) regular annual data, i.e. it was directly simulated and not degraded after, (b) regular
surrogate data degraded at regular 40-year intervals and irregular surrogate data with time steps drawn from a gamma distribution with
(c) skewness ν = 0.5 or (d) skewness ν = 1.

of H . The estimator has little bias for stationary series with
H < 0, but it steadily increases for higher values as the lower
frequencies bend upward (Fig. 5). This seems to be related
to the biased low characteristic of the MTM at the longest
timescales (Prieto et al., 2007), which creates an inflection
point (around1t ≈ 3000 years on Fig. 1), and the power lost
to its right appears redistributed to its left. Therefore, as H
increases, the amount of power lost is more important and
the inflection stronger. The LSP estimates are also largely
unbiased until about H = 0.5, and above it, a strong nega-
tive bias is developed, particularly on the side of the smaller
timescales (Figs. 5, 3 and 1).

The problem of irregularity is considered, using irregular
surrogate data skewness parameter ν = 0.5 and ν = 1 (Fig. 4;
bottom row). In the case of the MTM, we observe a consis-
tent bias for all H of about 0.5 and 0.1 for the shorter and
intermediate timescales, respectively, for the weakly irregu-
lar case (ν = 0.5) and practically no bias (0.02) at the longer
timescales (Fig. 5). This corresponds very closely to the ex-
pected bias from the linear interpolation step, and it could
potentially be accounted and corrected for. While it is out-
side of the scope of this study to formally develop such a
method, if we apply a first-order correction by dividing the
MTM spectra by a sinc4 with time constant corresponding to
the mean sampling resolution, we can greatly reduce the bias
down to the Nyquist frequency (Figs. 1 and S11).

The negative bias for the LSP evoked above for H > 0.5
amplifies with irregularity and even significantly affects a
wider range of H values, down to H =−0.5 for the most
irregular case (ν = 1.). This is a consequence of higher than
expected variance over the smaller timescales in the LSP
when the slope is steep, as already identified by Schulz and
Mudelsee (2002) using red noise. The HSF estimates, on the
other hand, remain mostly insensitive to the irregular sam-
pling for allH >−0.5, but we already identified the positive
bias in the regular case when H <−0.5 amplifies for more
negative values of H . Similarly, all methods yield increasing
positive bias for such an anti-persistent time series (i.e. with
H <−0.5) when the sampling is irregular. This conjuncture
seems to indicate that the anti-correlation characteristic of
H <−0.5 processes is lost, to some extent, when degraded
in an irregular manner to produce the surrogate data, as they
all show a similar increase of their bias (by about 0.15 for the
H =−0.9 case) with respect to their bias for the H =−0.5
case (Figs. 3 and 4).

3.2 Effect of time series length

While the irregularity had a larger impact on the bias of the
estimator, the length of the time series mostly influences the
variance of the estimator (Figs. 6 and S12).
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Figure 5. Timescale dependence of the bias and variance for regular and irregular series. We evaluate the following three methods: MTM
(circles), HSF (squares) and LSP (triangles). The colours correspond to the input H value for each simulation, ranging from −0.9 to 0.9
in increments of 0.1. The rows correspond to different types of surrogate series, namely (a–c) annual data, (d–f) regular data, (g–i) mildly
irregular data (ν = 0.5) and (j–l) strongly irregular data (ν = 1.0); see Sect. 2.2.1. The columns correspond to three different fitting ranges in
terms of the mean resolution τµ. (a, d, g, j) Shorter timescales – 2–9.2 τµ. (b, e, h, k) Intermediate timescales – 4.3–19.9 τµ. (c, f, i, l) Longer
timescales – 9.2–42.7 τµ.

In the case of the MTM estimates, all values of H result
in a similar standard deviation for a given resolution. When
the resolution is doubled, the standard deviation increases by
a factor close to the expected

√
2 (by ∼ 1.4–1.7), going from

σ ≈ 0.27 at the 160-year resolution to σ ≈ 0.07 at the 20-

year resolution (Fig. S12). The bias also improves when the
resolution increases, particularly for the higher values of H ,
such as for H = 0.9, which goes from B ≈ 0.27 at the 160-
year resolution to B ≈ 0.10 at the 20-year resolution, while
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Figure 6. The performance of the estimators is shown for regular surrogate data of different resolutions at (a) 160 years, (b) 80 years,
(c) 40 years and (d) 20 years. For each case, the series spanned 5120 years, and therefore, each case contains 32, 64, 128 and 256 data points,
respectively.

for negative H values it goes from B ≈ 0.05–0.07 to |B|<
0.01 for the same resolution change (Figs. 6 and S6).

In the case of the LSP, up to H ≈ 0.1, the standard devi-
ation of the estimates also decrease by a factor close to

√
2

(by ∼ 1.4–1.8; Fig. S12) with each doubling of resolution,
going from σ ≈ 0.35 at the 160-year resolution to σ ≈ 0.08
at the 20-year resolution, and the bias improves only slightly
since it was already small (|B|< 0.04). For the higher H
values, the standard deviation improves less (by ∼ 1.2–1.4
at H = 0.9; Fig. S12), going from σ ≈ 0.43 at the 160-year
resolution to only σ ≈ 0.19 at the 20-year resolution. At the
same time, the bias change becomes more positive, thus com-
pensating slightly better for the overall strong negative bias
characteristic of the LSP estimates for very high H values.

In the case of the HSF, when increasing the resolution, the
standard deviation of the estimates improves more for the
lower H values than for the higher values, improving by a
factor of ∼ 1.4–1.8 for H =−0.9 to ∼ 1.2–1.4 for H = 0.9
(Fig. S12). Overall, the standard deviation improves from
σ ≈ 0.20–0.25 at the 160-year resolution to σ ≈ 0.06–0.09
at the 20-year resolution. The slight negative bias found for
theH >−0.5 estimates (|B|< 0.04) practically vanishes but
not the positive one for H <−0.5, which only decreases
slightly.

3.3 Application to database

In order to see how these results translate to typical proxy
records, we perform the analysis with surrogate data with
sampling characteristic and scaling behaviour directly ex-
tracted from the database of Holocene and LGM records (see
Sect. 2.3). We make the assumption that the series approxi-
mately follow power law scaling, and that they can, therefore,
be modelled by fractional noise described by a scaling expo-
nent H . Since the best H to describe the approximate scal-
ing behaviour of the series is unknown, we make an initial
approximation with each method and take the median of the
three results as the reference value for the given series, with
which we generate an ensemble of surrogates with the same
sampling scheme as the given series. We use the real time
steps in order to evaluate the impact of each specific sam-
pling scheme. Again, we consistently fitted up to one-third
of the length (see Sect. 2.1.3) but empirically determined the
best minimum fitting scale τmin such that it minimizes the
RMSE of the estimator with respect to the reference H used
to generate the surrogate data.

We found the HSF to yield the smallest τmin of the three
methods, with τmin below twice the value of the mean reso-
lution τµ for 121 out of 127 series and even below τµ for 43
out of 127 (Fig. 7). The LSP yielded similar results, with 109
out of 127 series having τmin below twice the value of τµ and
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Figure 7. The best minimum fitting timescales τmin (minimizing
the RMSE in H ) are shown for each method as a function of the
mean resolution τµ for ensembles of surrogate data generated with
the same sampling scheme as the corresponding palaeoclimate time
series from the database.

41 out of 127 having τmin even lower than τµ. This contrasts
with the MTM, which almost never suggests best results for
τmin below twice the value of τµ but rather an average mini-
mum resolution τmin = 3.3τµ, compared to τmin = 1.2τµ for
the HSF and τmin = 1.3τµ for the LSP. This underlines the
point that, because interpolation-free methods give more re-
liable estimates at shorter timescales, they allow for a better
usage of the full data.

The HSF yields the best results of all three methods, both
in terms of variance of the estimates and in terms of bias,
with a mild tendency towards positive biases. The MTM also
tends to show positive biases, albeit higher, while the LSP
tends to show negative biases. Both the MTM and the LSP
generally show a higher variance of their estimators than the
HSF (Fig. 8), although for different reasons. The MTM has a
higher variance because the higher τmin does not allow us to
use the smaller timescales in the estimation procedure, while
the LSP shows higher variance because of the time series
with high input H for which it performs poorly, especially
when the data are irregular (Fig. 4).

On average, the HSF method gave the lowest RMSE=
0.11±0.04 compared to RMSE= 0.30±0.15 and RMSE=
0.19±0.15 for the MTM and the LSP, respectively. The poor
performance of the LSP compared to the HSF stems from the
higher H , since it performs as well as the Haar when H < 0,
with RMSE= 0.12± 0.07 (Fig. 9).

4 Discussion

Our comparative study indicates that, for irregular time se-
ries, the methods with interpolation, i.e. the CPG and the
MTM, are less efficient for evaluating variability across
timescales than the methods without interpolation, i.e. the
LSP and the HSF. In the case of regular time series, however,
all methods were found to perform similarly (Fig. 4b) for a
wide range of input H and only showed bias on the fringes
of the H range considered. In addition, we found that the
choice of method should also be informed by the character-
istics of the underlying process measured since there was an
observed dependence between the performance metrics and
the scaling exponent H which generated the surrogate data.
As such, the LSP may only be appropriate for irregular series
suspected of having H near or below H =−0.5, while the
HSF shows better reliability even when H is near or above
H = 0. It might not be so surprising that the LSP performed
poorly for higher H values since it has been developed to
approximate the CPG for stationary noise processes (Scar-
gle, 1982), and processes with H > 0 are non-stationary, i.e.
their mean is not stable and changes with time.

In addition to the irregularity, we also compared how the
resolution of the time series affects the estimators of H .
While making the series more irregular mostly affected the
accuracy of the estimates, i.e. their bias, without affecting
their precision, i.e. their standard deviation, increasing the
resolution mostly improved the precision and the accuracy
only to a lesser extent. Increasing the resolution naturally im-
proves the estimates as it provides more information and also
because it decreases the relative weight of the most uncer-
tain timescales, i.e. the smaller timescales, near the sampling
resolution, and the longer timescales, near the length of the
series.

Our conclusions, however, rely on the real data having
similar properties to the surrogate data used to validate the
methods, and the conclusions may be different if the real
data have properties different than the assumed power law
scaling. It is difficult to say, for example, which method
would perform best if the data analyzed contained two differ-
ent scaling regimes, i.e. one with low H and the other with
highH (Lovejoy and Schertzer, 2013). Another limitation of
our surrogate data is that it is Gaussian distributed, whereas
real palaeoclimate data can exhibit multifractality (Schmitt
et al., 1995; Shao and Ditlevsen, 2016). Furthermore, in or-
der to degrade the simulated annual time series into irregu-
lar palaeoclimate-like data, we had to use simplified numer-
ical methods to mimic the physical processes and manipula-
tions leading to the recording and retrieval of palaeoclimate
archives. For our purpose, we chose to low-pass filter the data
and subsample, since this is very common in sedimentary
data and ice cores because of, respectively, bio-turbation and
diffusion (Dolman and Laepple, 2018; Dolman et al., 2021;
Kunz et al., 2020). However, reality is more complex, and
other processes could significantly alter the recorded signal
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Figure 8. Bias–standard deviation diagram for the surrogate time series generated using time steps from the palaeoclimate database. The
inputH , used to generate the time series, is indicated by the colour inside the markers. The shaded polygons contain all the points for a given
method (see the legend for colours).

Figure 9. RMSE of theH estimates as a function of the inputH for
the surrogate time series based on the proxy database. The RMSEs
are given for the three estimation methods as a function of the H
used to generate the surrogates. Also shown is a Gaussian smooth-
ing of the points for each method (thick line) and the 1 standard
deviation confidence interval (shaded).

and bias the variability estimates in ways not accounted for
by our surrogate model. For specific case studies, it is advis-
able to develop forward models (Stevenson et al., 2013; Dee
et al., 2017; Dolman and Laepple, 2018; Casado et al., 2020)
of the studied palaeoclimate archives in order to understand
potential biases generated by the recording and specific sam-
pling.

In summary, it is difficult to ascertain which method is the
best since the answer depends on the irregularity, the res-
olution and, most importantly, the underlying H values. In
this respect, the HSF is possibly the safer method for palaeo-
climate applications since it only performs poorly for series
withH <−0.5, an almost unseen behaviour in climatic time
series at timescales longer than decadal. Although the LSP
gives equally good results for H/0 and even better near
H =−0.5, i.e. white noise, its increasing bias and standard
deviation for higher H values makes it an uncertain choice
for timescales longer than centennial timescales since cli-
mate time series at those timescales often show values of
H ≈ 0 and greater. The MTM produces good estimates for
relatively regular series but struggles with highly irregular
time series, since it must rely on interpolation. While this
produces a large bias on the shorter timescales which we
have thus discarded, the bias is rather consistent, and meth-
ods could be developed to correct for it (e.g. Fig. S11). On
the other hand, the longer timescales of the MTM are rel-
atively well estimated, and it is appropriate to estimate the
absolute variance over a timescale band well above the mean
resolution (Rehfeld et al., 2018; Hébert et al., 2021). Fur-
thermore, the effect of proxy biases are well studied for the
power spectrum (Kunz et al., 2020; Dolman et al., 2021),
mainly due to the known properties of the Fourier transform.
However, the MTM, and the LSP, do not allow for the charac-
terization of intermittency through the study of all statistical
moments; this is in contrast to the HSF, which is, thus, better
suited for the analysis of time series displaying multifractal-
ity, such as palaeoclimate time series at glacial–interglacial
timescales comprising Dansgaard–Oeschger events (Schmitt
et al., 1995; Shao and Ditlevsen, 2016)
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Our study is not comprehensive, and other methods such
as the bias-corrected version of Lomb–Scargle (Schulz and
Mudelsee, 2002, REDFIT) and the z transform wavelet (Zhu
et al., 2019) exist. More precise estimates of the scaling ex-
ponent are obtained by parametric methods based on max-
imum likelihood, but they require strong assumptions about
the underlying process (Del Rio Amador and Lovejoy, 2019).
We aimed to cover the most commonly used methods that
also allow for a simple interpretation of variability across
timescales, either because they represent the well-studied
power spectrum or the Haar fluctuations directly provide
changes in amplitude.

5 Conclusions

Characterizing the variability across timescales is important
for understanding the underlying dynamics of the Earth sys-
tem. It remains challenging to do so from palaeoclimate
archives, since they are more often than not irregular, and
traditional methods for producing timescale-dependent esti-
mates of variability, such as the classical periodogram and
the multitaper spectrum, generally require regular time sam-
pling.

We have compared those traditional methods using inter-
polation with interpolation-free methods, namely the Lomb–
Scargle periodogram and the first-order Haar structure func-
tion. The ability of those methods to produce timescale-
dependent estimates of variability when applied to irregular
data was evaluated in a comparative framework. The metric
we chose to compare them is the scaling exponent, i.e. the
linear slope in log-transformed coordinates, since it summa-
rizes the behaviour of the variability over a given timescale
band. Doing so assumes power law scaling, a behaviour
which is often observed in geophysical time series, at least
approximatively (Mandelbrot and Wallis, 1968; Cannon and
Mandelbrot, 1984; Pelletier and Turcotte, 1999; Malamud
and Turcotte, 1999; Fedi, 2016; Corral and González, 2019).
To evaluate our estimators, we generated fractional noise as
surrogate annual time series characterized by a given scal-
ing exponent H , also known as fractional Gaussian noise
when they are stationary (H < 0) and fractional Brownian
motion when they are non-stationary (H > 0). The annual
time series were then degraded to resolution characteristics
of palaeoclimate archives for the recent Holocene.

We found that, for scaling estimates in irregular time se-
ries, the interpolation-free methods are to be preferred over
the methods requiring interpolation as they allow for the
utilization of the information from shorter timescales with-
out introducing additional bias. In addition, our results sug-
gest that the Haar structure function is the safer choice
of interpolation-free method, since the Lomb–Scargle peri-
odogram is unreliable when the underlying process gener-
ating the time series is not stationary. This conclusion was
reinforced by the application to the proxy database which

indeed showed the Haar structure function to give more reli-
able estimates over a wide range of H . Given that we cannot
know a priori what kind of scaling behaviour is contained in
a palaeoclimate time series, and that it is also possible that
this changes as a function of timescale, it is a desirable char-
acteristic for the method to handle both stationary and non-
stationary cases alike.

Code and data availability. The data are available as the supple-
ment to Rehfeld et al. (2018, https://doi.org/10.1038/nature25454)
and the code is publicly available on Zenodo (Hébert, 2021,
https://doi.org/10.5281/zenodo.5037581).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/npg-28-311-2021-supplement.

Author contributions. All authors participated in the conceptualiza-
tion of the research and the methodology. RH developed the soft-
ware and visualization and conducted the formal analysis and inves-
tigation. KR and TL provided supervision. RH prepared the original
draft, and all authors contributed to reviewing and editing the final
paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue “A
century of Milankovic’s theory of climate changes: achievements
and challenges (NPG/CP inter-journal SI)”. It is not associated with
a conference.

Acknowledgements. This study was undertaken by members of Cli-
mate Variability Across Scales (CVAS), following discussions at
several workshops. CVAS is a working group of the Past Global
Changes (PAGES) project, which, in turn, received support from the
Swiss Academy of Sciences and the Chinese Academy of Sciences.
We particularly thank Torben Kunz and Shaun Lovejoy, for the
in-depth discussions, and Timothy Graves and Christian Franzke,
for freely sharing the software for generating fractional noise. We
also acknowledge discussions with Mathieu Casado, Lenin del Rio
Amador, Andrew Dolman, Igor Kröner and Thomas Münch. We
thank all the original data contributors who made their proxy data
available. This is a contribution to the SPACE and GLACIAL
LEGACY ERC projects.

https://doi.org/10.5194/npg-28-311-2021 Nonlin. Processes Geophys., 28, 311–328, 2021

https://doi.org/10.1038/nature25454
https://doi.org/10.5281/zenodo.5037581
https://doi.org/10.5194/npg-28-311-2021-supplement


326 R. Hébert et al.: Scaling of palaeoclimate time series

Financial support. This research has been supported by the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant nos.
716092 and 772852), the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation; grant no. 395588486) and the
Bundesministerium für Bildung und Forschung (German Federal
Ministry of Education and Research, BMBF) through the PalMod
project (grant no. 01LP1926C).

The article processing charges for this open-access
publication were covered by the Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research (AWI).

Review statement. This paper was edited by Daniel Schertzer and
reviewed by two anonymous referees.

References

Benedict, L. H., Nobach, H., and Tropea, C.: Estimation of turbulent
velocity spectra from laser Doppler data, Meas. Sci. Technol., 11,
1089–1104, https://doi.org/10.1088/0957-0233/11/8/301, 2000.

Berger, W. H. and Heath, G. R.: Vertical mixing in pelagic sedi-
ments, J. Mar. Res., 26, 134–143, 1968.

Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein,
P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner,
B., and Zhao, Y.: Evaluation of climate models us-
ing palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012.

Bradley, R. S.: Paleoclimatology, 3rd edn., Academic Press, San
Diego, https://doi.org/10.1016/C2009-0-18310-1, 2015.

Cannon, J. W. and Mandelbrot, B. B.: The Fractal Ge-
ometry of Nature, Am. Math. Mon., 91, 594–598,
https://doi.org/10.2307/2323761, 1984.

Casado, M., Münch, T., and Laepple, T.: Climatic information
archived in ice cores: impact of intermittency and diffusion on
the recorded isotopic signal in Antarctica, Clim. Past, 16, 1581–
1598, https://doi.org/10.5194/cp-16-1581-2020, 2020.

Chatfield, C.: The Analysis of Time Series, Theory and Practice,
in: Monographs on Applied Probability and Statistics, Springer
Publishing, New York, NY, https://doi.org/10.1007/978-1-4899-
2925-9, 2013.

CLIMAP Project Members: The Surface of
the Ice-Age Earth, Science, 191, 1131–1137,
https://doi.org/10.1126/science.191.4232.1131, 1976.

Corral, A. and González, A.: Power law size distributions in
geoscience revisited, Earth and Space Science, 6, 673–697,
https://doi.org/10.1029/2018EA000479, 2019.

Damaschke, N., Kühn, V., and Nobach, H.: A fair re-
view of non-parametric bias-free autocorrelation and
spectral methods for randomly sampled data in laser
Doppler velocimetry, Digit. Signal Process., 76, 22–33,
https://doi.org/10.1016/j.dsp.2018.01.018, 2018.

Dee, S. G., Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault,
T. R., and Emile-Geay, J.: Improved spectral comparisons of pa-
leoclimate models and observations via proxy system modeling:
Implications for multi-decadal variability, Earth Planet. Sc. Lett.,
476, 34–46, https://doi.org/10.1016/j.epsl.2017.07.036, 2017.

Del Rio Amador, L. and Lovejoy, S.: Predicting the global
temperature with the Stochastic Seasonal to Interannual Pre-
diction System (StocSIPS), Clim. Dynam., 53, 4373–4411,
https://doi.org/10.1007/s00382-019-04791-4, 2019.

Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for
sediment-archived climate proxies, Clim. Past, 14, 1851–1868,
https://doi.org/10.5194/cp-14-1851-2018, 2018.

Dolman, A. M., Kunz, T., Groeneveld, J., and Laepple, T.: A
spectral approach to estimating the timescale-dependent uncer-
tainty of paleoclimate records – Part 2: Application and interpre-
tation, Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-
825-2021, 2021.

Fedi, M.: Scaling Laws in Geophysics: Application to Potential
Fields of Methods Based on the Laws of Self-similarity and
Homogeneity, in: Fractal Solutions for Understanding Complex
Systems in Earth Sciences, edited by: Dimri, V., Springer Earth
System Sciences, Springer Earth System Sciences, Springer In-
ternational Publishing, Cham, 1–18, https://doi.org/10.1007/978-
3-319-24675-8_1, 2016.

Franzke, C. L. E., Graves, T., Watkins, N. W., Gramacy, R. B., and
Hughes, C.: Robustness of estimators of long-range dependence
and self-similarity under non-Gaussianity, Philos. T. Roy. Soc. A,
370, 1250–1267, https://doi.org/10.1098/rsta.2011.0349, 2012.

Fredriksen, H.-B. and Rypdal, K.: Spectral Characteristics of Instru-
mental and Climate Model Surface Temperatures, J. Climate, 29,
1253–1268, https://doi.org/10.1175/JCLI-D-15-0457.1, 2015.

Graves, T., Gramacy, R., Watkins, N., and Franzke, C.:
A Brief History of Long Memory: Hurst, Mandelbrot
and the Road to ARFIMA, 1951–1980, Entropy, 19, 437,
https://doi.org/10.3390/e19090437, 2017.

Haar, A.: Zur Theorie der orthogonalen Funktionensysteme, Math.
Ann., 69, 331–371, https://doi.org/10.1007/BF01456326, 1910
(in German).

Hébert, R.: RScaling.v1.0.0, Version 1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.5037581, 2021.

Hébert, R., Herzschuh, U., and Laepple, T.: Land temperature vari-
ability driven by oceans at millennial timescales, Nat. Geosci., in
review, 2021.

Horne, J. H. and Baliunas, S. L.: A prescription for period analysis
of unevenly sampled time series, Astrophys. J., 302, 757–763,
https://doi.org/10.1086/164037, 1986.

Hurst, H. E.: Methods of using long-term stor-
age in reservoirs, P. I. Civil Eng., 5, 519–543,
https://doi.org/10.1680/iicep.1956.11503, 1956.

Huybers, P. and Curry, W.: Links between annual, Milankovitch
and continuum temperature variability, Nature, 441, 329–332,
https://doi.org/10.1038/nature04745, 2006.

Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A.,
Havlin, S., and Bunde, A.: Detecting long-range correlations
with detrended fluctuation analysis, Physica A, 295, 441–454,
https://doi.org/10.1016/S0378-4371(01)00144-3, 2001.

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin,
S., Bunde, A., and Stanley, H.: Multifractal detrended fluctuation
analysis of nonstationary time series, Physica A, 316, 87–114,
https://doi.org/10.1016/S0378-4371(02)01383-3, 2002.

Koscielny-Bunde, E., Bunde, A., Havlin, S., and Goldreich, Y.:
Analysis of daily temperature fluctuations, Physica A, 231, 393–
396, https://doi.org/10.1016/0378-4371(96)00187-2, 1996.

Nonlin. Processes Geophys., 28, 311–328, 2021 https://doi.org/10.5194/npg-28-311-2021

https://doi.org/10.1088/0957-0233/11/8/301
https://doi.org/10.1038/nclimate1456
https://doi.org/10.1016/C2009-0-18310-1
https://doi.org/10.2307/2323761
https://doi.org/10.5194/cp-16-1581-2020
https://doi.org/10.1007/978-1-4899-2925-9
https://doi.org/10.1007/978-1-4899-2925-9
https://doi.org/10.1126/science.191.4232.1131
https://doi.org/10.1029/2018EA000479
https://doi.org/10.1016/j.dsp.2018.01.018
https://doi.org/10.1016/j.epsl.2017.07.036
https://doi.org/10.1007/s00382-019-04791-4
https://doi.org/10.5194/cp-14-1851-2018
https://doi.org/10.5194/cp-17-825-2021
https://doi.org/10.5194/cp-17-825-2021
https://doi.org/10.1007/978-3-319-24675-8_1
https://doi.org/10.1007/978-3-319-24675-8_1
https://doi.org/10.1098/rsta.2011.0349
https://doi.org/10.1175/JCLI-D-15-0457.1
https://doi.org/10.3390/e19090437
https://doi.org/10.1007/BF01456326
https://doi.org/10.5281/zenodo.5037581
https://doi.org/10.1086/164037
https://doi.org/10.1680/iicep.1956.11503
https://doi.org/10.1038/nature04745
https://doi.org/10.1016/S0378-4371(01)00144-3
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/0378-4371(96)00187-2


R. Hébert et al.: Scaling of palaeoclimate time series 327

Kunz, T., Dolman, A. M., and Laepple, T.: A spectral approach to
estimating the timescale-dependent uncertainty of paleoclimate
records – Part 1: Theoretical concept, Clim. Past, 16, 1469–1492,
https://doi.org/10.5194/cp-16-1469-2020, 2020.

Laepple, T. and Huybers, P.: Reconciling discrepancies between
Uk37 and Mg/Ca reconstructions of Holocene marine tem-
perature variability, Earth Planet. Sc. Lett., 375, 418–429,
https://doi.org/10.1016/j.epsl.2013.06.006, 2013.

Laepple, T. and Huybers, P.: Global and regional variability in ma-
rine surface temperatures, Geophys. Res. Lett., 41, 2528–2534,
https://doi.org/10.1002/2014GL059345, 2014a.

Laepple, T. and Huybers, P.: Ocean surface temperature vari-
ability: Large model–data differences at decadal and longer
periods, P. Natl. Acad. Sci. USA, 111, 16682–16687,
https://doi.org/10.1073/pnas.1412077111, 2014b.

Lomb, N. R.: Least-squares frequency analysis of un-
equally spaced data, Astrophys. Space Sci., 39, 447–462,
https://doi.org/10.1007/BF00648343, 1976.

Lovejoy, S.: A voyage through scales, a missing quadrillion and
why the climate is not what you expect, Clim. Dynam., 44, 3187–
3210, https://doi.org/10.1007/s00382-014-2324-0, 2015.

Lovejoy, S. and Lambert, F.: Spiky fluctuations and scaling in high-
resolution EPICA ice core dust fluxes, Clim. Past, 15, 1999–
2017, https://doi.org/10.5194/cp-15-1999-2019, 2019.

Lovejoy, S. and Schertzer, D.: Haar wavelets, fluctuations and struc-
ture functions: convenient choices for geophysics, Nonlin. Pro-
cesses Geophys., 19, 513–527, https://doi.org/10.5194/npg-19-
513-2012, 2012.

Lovejoy, S. and Schertzer, D.: Low-Frequency Weather and
the Emergence of the Climate, in: Extreme Events and
Natural Hazards: The Complexity Perspective, edited by:
Sharma, A. S., Bunde, A., Dimri, V. P., and Baker,
D. N., American Geophysical Union (AGU), 231–254,
https://doi.org/10.1029/2011GM001087, 2013.

Lovejoy, S. and Varotsos, C.: Scaling regimes and lin-
ear/nonlinear responses of last millennium climate to vol-
canic and solar forcings, Earth Syst. Dynam., 7, 133–150,
https://doi.org/10.5194/esd-7-133-2016, 2016.

Lovejoy, S., del Rio Amador, L., and Hébert, R.: The ScaLIng
Macroweather Model (SLIMM): using scaling to forecast global-
scale macroweather from months to decades, Earth Syst. Dy-
nam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015, 2015.

Lovejoy, S., Procyk, R., Hébert, R., and Del Rio Amador, L.: The
Fractional Energy Balance Equation, Q. J. Roy. Meteor. Soc.,
147, 1964–1988, https://doi.org/10.1002/qj.4005, 2021.

Malamud, B. D. and Turcotte, D. L.: Self-Affine Time Se-
ries: I. Generation and Analyses, Adv. Geophys., 40, 1–90,
https://doi.org/10.1016/S0065-2687(08)60293-9, 1999.

Mandelbrot, B. B.: A Fast Fractional Gaussian
Noise Generator, Water Resour. Res., 7, 543–553,
https://doi.org/10.1029/WR007i003p00543, 1971.

Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian Mo-
tions, Fractional Noises and Applications, SIAM Rev., 10, 422–
437, https://www.jstor.org/stable/2027184 (last access: 27 June
2021), 1968.

Mandelbrot, B. B. and Wallis, J. R.: Noah, Joseph, and
Operational Hydrology, Water Resour. Res., 4, 909–918,
https://doi.org/10.1029/WR004i005p00909, 1968.

Mitchell Jr., J. M.: An overview of climatic variability and its causal
mechanisms, Quaternary Res., 6, 481–493, 1976.

Molz, F. J., Liu, H. H., and Szulga, J.: Fractional Brow-
nian motion and fractional Gaussian noise in subsurface
hydrology: A review, presentation of fundamental proper-
ties, and extensions, Water Resour. Res., 33, 2273–2286,
https://doi.org/10.1029/97WR01982, 1997.

Munteanu, C., Negrea, C., Echim, M., and Mursula, K.: Effect of
data gaps: comparison of different spectral analysis methods,
Ann. Geophys., 34, 437–449, https://doi.org/10.5194/angeo-34-
437-2016, 2016.

Nilsen, T., Rypdal, K., and Fredriksen, H.-B.: Are there multi-
ple scaling regimes in Holocene temperature records?, Earth
Syst. Dynam., 7, 419–439, https://doi.org/10.5194/esd-7-419-
2016, 2016.

Pelletier, J. D. and Turcotte, D. L.: Self-Affine Time Series:
II. Applications and Models, Adv. Geophys., 40, 91–166,
https://doi.org/10.1016/S0065-2687(08)60294-0, 1999.

Peng, C., Havlin, S., Stanley, H. E., and Goldberger, A. L.:
Quantification of scaling exponents and crossover phenom-
ena in nonstationary heartbeat time series, Chaos: An In-
terdisciplinary Journal of Nonlinear Science, 5, 82–87,
https://doi.org/10.1063/1.166141, 1995.

Percival, D. B. and Walden, A. T.: Spectral Analysis for Physi-
cal Applications: Multitaper and Conventional Univariate Tech-
niques, Cambridge University Press, Cambridge, UK, ISBN-
10: 0521435412, 1993.

Prieto, G., Parker, R., Thomson, D., Vernon, F., and Graham, R.:
Reducing the bias of multitaper spectrum estimates, Geophys. J.
Int., 171, 1269–1281, 2007.

Rehfeld, K. and Kurths, J.: Similarity estimators for irregu-
lar and age-uncertain time series, Clim. Past, 10, 107–122,
https://doi.org/10.5194/cp-10-107-2014, 2014.

Rehfeld, K., Marwan, N., Heitzig, J., and Kurths, J.: Compar-
ison of correlation analysis techniques for irregularly sam-
pled time series, Nonlin. Processes Geophys., 18, 389–404,
https://doi.org/10.5194/npg-18-389-2011, 2011.

Rehfeld, K., Münch, T., Ho, S. L., and Laepple, T.: Global
patterns of declining temperature variability from the Last
Glacial Maximum to the Holocene, Nature, 554, 356–359,
https://doi.org/10.1038/nature25454, 2018.

Reschke, M., Kunz, T., and Laepple, T.: Comparing methods
for analysing time scale dependent correlations in irregu-
larly sampled time series data, Comput. Geosci., 123, 65–72,
https://doi.org/10.1016/j.cageo.2018.11.009, 2019a.

Reschke, M., Rehfeld, K., and Laepple, T.: Empirical estimate
of the signal content of Holocene temperature proxy records,
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-
2019, 2019b.

Rhines, A. and Huybers, P.: Estimation of spectral power laws in
time uncertain series of data with application to the Greenland
Ice Sheet Project 2 δ18O record, J. Geophys. Res., 116, D01103,
https://doi.org/10.1029/2010JD014764, 2011.

Rybski, D., Bunde, A., Havlin, S., and von Storch, H.: Long-term
persistence in climate and the detection problem, Geophys. Res.
Lett., 33, L06718, https://doi.org/10.1029/2005GL025591, 2006.

Scargle, J. D.: Studies in astronomical time series analysis. II – Sta-
tistical aspects of spectral analysis of unevenly spaced data, As-
trophys. J., 263, 835–853, https://doi.org/10.1086/160554, 1982.

https://doi.org/10.5194/npg-28-311-2021 Nonlin. Processes Geophys., 28, 311–328, 2021

https://doi.org/10.5194/cp-16-1469-2020
https://doi.org/10.1016/j.epsl.2013.06.006
https://doi.org/10.1002/2014GL059345
https://doi.org/10.1073/pnas.1412077111
https://doi.org/10.1007/BF00648343
https://doi.org/10.1007/s00382-014-2324-0
https://doi.org/10.5194/cp-15-1999-2019
https://doi.org/10.5194/npg-19-513-2012
https://doi.org/10.5194/npg-19-513-2012
https://doi.org/10.1029/2011GM001087
https://doi.org/10.5194/esd-7-133-2016
https://doi.org/10.5194/esd-6-637-2015
https://doi.org/10.1002/qj.4005
https://doi.org/10.1016/S0065-2687(08)60293-9
https://doi.org/10.1029/WR007i003p00543
https://www.jstor.org/stable/2027184
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/97WR01982
https://doi.org/10.5194/angeo-34-437-2016
https://doi.org/10.5194/angeo-34-437-2016
https://doi.org/10.5194/esd-7-419-2016
https://doi.org/10.5194/esd-7-419-2016
https://doi.org/10.1016/S0065-2687(08)60294-0
https://doi.org/10.1063/1.166141
https://doi.org/10.5194/cp-10-107-2014
https://doi.org/10.5194/npg-18-389-2011
https://doi.org/10.1038/nature25454
https://doi.org/10.1016/j.cageo.2018.11.009
https://doi.org/10.5194/cp-15-521-2019
https://doi.org/10.5194/cp-15-521-2019
https://doi.org/10.1029/2010JD014764
https://doi.org/10.1029/2005GL025591
https://doi.org/10.1086/160554


328 R. Hébert et al.: Scaling of palaeoclimate time series

Schertzer, D. and Lovejoy, S.: Physical modeling and anal-
ysis of rain and clouds by anisotropic scaling multi-
plicative processes, J. Geophys. Res., 92, 9693–9714,
https://doi.org/10.1029/JD092iD08p09693, 1987.

Schimmel, M.: Emphasizing Difficulties in the Detection of
Rhythms with Lomb-Scargle Periodograms, Biol. Rhythm Res.,
32, 341–346, https://doi.org/10.1076/brhm.32.3.341.1340, 2001.

Schmitt, F., Lovejoy, S., and Schertzer, D.: Multifractal analysis of
the Greenland Ice-Core Project climate data, Geophys. Res. Lett.,
22, 1689–1692, https://doi.org/10.1029/95GL01522, 1995.

Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spec-
tra directly from unevenly spaced paleoclimatic time series,
Comput. Geosci., 28, 421–426, https://doi.org/10.1016/S0098-
3004(01)00044-9, 2002.

Schulz, M. and Stattegger, K.: Spectrum: spectral analysis of
unevenly spaced paleoclimatic time series, Comput. Geosci.,
23, 929–945, https://doi.org/10.1016/S0098-3004(97)00087-3,
1997.

Schuster, A.: On the investigation of hidden periodicities
with application to a supposed 26 day period of me-
teorological phenomena, Terrestrial Magnetism, 3, 13–41,
https://doi.org/10.1029/TM003i001p00013, 1898.

Shao, Z.-G. and Ditlevsen, P. D.: Contrasting scaling properties
of interglacial and glacial climates, Nat. Commun., 7, 10951,
https://doi.org/10.1038/ncomms10951, 2016.

Slepian, D. and Pollak, H. O.: Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty – I, Bell Syst. Tech. J., 40, 43–
63, https://doi.org/10.1002/j.1538-7305.1961.tb03976.x, 1961.

Smith, J. O.: Physical audio signal processing: for virtual musi-
cal instruments and audio effects, W3K Publishing, Lexington,
OCLC: 774174525, 2011.

Stevenson, S., McGregor, H. V., Phipps, S. J., and Fox-Kemper, B.:
Quantifying errors in coral-based ENSO estimates: Toward im-
proved forward modeling of δ18O, Paleoceanography, 28, 633–
649, https://doi.org/10.1002/palo.20059, 2013.

Thomson, D.: Spectrum estimation and harmonic analysis, P. IEEE,
70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433,
1982.

Trauth, M. H.: MATLAB® recipes for earth sciences, Springer,
New York City, OCLC: 1230144419, 2020.

VanderPlas, J. T.: Understanding the Lomb–Scargle Pe-
riodogram, Astrophys. J. Suppl. S., 236, 28 pp.,
https://doi.org/10.3847/1538-4365/aab766, 2018.

von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate
Research, Cambridge University Press, Cambridge, 1st edn.,
https://doi.org/10.1017/CBO9780511612336, 1984.

Vyushin, D., Mayer, J., and Kushner, P.: Spectral Analysis of Time
Series, https://www.atmosp.physics.utoronto.ca/people/vyushin/
mysoftware.html (last access: 27 June 2021), 2009.

Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D.,
Ault, T. R., Steig, E. J., Dee, S., and Kirchner, J. W.: Climate
models can correctly simulate the continuum of global-average
temperature variability, P. Natl. Acad. Sci. USA, 116, 8728–
8733, https://doi.org/10.1073/pnas.1809959116, 2019.

Nonlin. Processes Geophys., 28, 311–328, 2021 https://doi.org/10.5194/npg-28-311-2021

https://doi.org/10.1029/JD092iD08p09693
https://doi.org/10.1076/brhm.32.3.341.1340
https://doi.org/10.1029/95GL01522
https://doi.org/10.1016/S0098-3004(01)00044-9
https://doi.org/10.1016/S0098-3004(01)00044-9
https://doi.org/10.1016/S0098-3004(97)00087-3
https://doi.org/10.1029/TM003i001p00013
https://doi.org/10.1038/ncomms10951
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
https://doi.org/10.1002/palo.20059
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.3847/1538-4365/aab766
https://doi.org/10.1017/CBO9780511612336
https://www.atmosp.physics.utoronto.ca/people/vyushin/mysoftware.html
https://www.atmosp.physics.utoronto.ca/people/vyushin/mysoftware.html
https://doi.org/10.1073/pnas.1809959116

	Abstract
	Introduction
	Data and methods
	Scaling estimation methods
	Power spectrum
	Haar structure function
	Slope estimation

	Evaluation of the estimators
	Surrogate data
	Performance metrics and performance plots

	Data

	Results
	Effect of regular and irregular sampling
	Effect of time series length
	Application to database

	Discussion
	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

