Articles | Volume 28, issue 1
https://doi.org/10.5194/npg-28-111-2021
https://doi.org/10.5194/npg-28-111-2021
Research article
 | 
09 Feb 2021
Research article |  | 09 Feb 2021

Training a convolutional neural network to conserve mass in data assimilation

Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp

Related authors

Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023,https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Using neural networks to improve simulations in the gray zone
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022,https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
A quest for precipitation attractors in weather radar archives
Loris Foresti, Bernat Puigdomènech Treserras, Daniele Nerini, Aitor Atencia, Marco Gabella, Ioannis V. Sideris, Urs Germann, and Isztar Zawadzki
Nonlin. Processes Geophys., 31, 259–286, https://doi.org/10.5194/npg-31-259-2024,https://doi.org/10.5194/npg-31-259-2024, 2024
Short summary
Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023,https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023,https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary

Cited articles

Bishop, C. H., Etherton, B. J., and Majumdar, S.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects., Mon. Weather Rev., 129, 420–436, 2001. a
Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2, 55–80, https://doi.org/10.3934/fods.2020004, 2020. a
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci.-Neth, 44, 101171, https://doi.org/10.1016/j.jocs.2020.101171, 2020a. a, b
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to infer unresolved scale parametrisation, arXiv [preprint], arXiv:2009.04318, 9 September 2020b. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, J. Adv. Model. Earth Sy., 11, 2728–2744, https://doi.org/10.1029/2019MS001711, 2019. a
Download
Short summary
The assimilation of observations using standard algorithms can lead to a violation of physical laws (e.g. mass conservation), which is shown to have a detrimental impact on the system's forecast. We use a neural network (NN) to correct this mass violation, using training data generated from expensive algorithms that can constrain such physical properties. We found that, in an idealized set-up, the NN can match the performance of these expensive algorithms at negligible computational costs.