Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-283-2019
https://doi.org/10.5194/npg-26-283-2019
Research article
 | 
21 Aug 2019
Research article |  | 21 Aug 2019

Explosive instability due to flow over a rippled bottom

Anirban Guha and Raunak Raj

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary
Exceedance frequency of appearance of the extreme internal waves in the World Ocean
Tatyana Talipova, Efim Pelinovsky, Oxana Kurkina, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 25, 511–519, https://doi.org/10.5194/npg-25-511-2018,https://doi.org/10.5194/npg-25-511-2018, 2018
Short summary

Cited articles

Alam, M. R., Liu, Y., and Yue, D. K. P.: Bragg resonance of waves in a two-layer fluid propagating over bottom ripples, Part I, Perturbation analysis, J. Fluid Mech., 624, 191–224, 2009a. a
Alam, M. R., Liu, Y., and Yue, D. K. P.: Bragg resonance of waves in a two-layer fluid propagating over bottom ripples, Part II, Numerical simulation, J. Fluid Mech., 624, 225–253, 2009b. a
Alford, M. H., Mickett, J. B., Zhang, S., MacCready, P., Zhao, Z., and Newton, J.: Internal Waves on the Washington Continental Shelf, Oceanography, 25, 66–79, https://doi.org/10.5670/oceanog.2012.43, 2012. a
Ball, F. K.: Energy transfer between external and internal gravity waves, J. Fluid Mech., 19, 465–478, 1964. a
Cairns, R. A.: The role of negative energy waves in some instabilities of parallel flows, J. Fluid Mech., 92, 1–14, 1979. a, b, c, d
Download
Short summary
Waves observed on the ocean surface often nonlinearly interact among themselves and undergo algebraic growth – a mechanism known as resonant triad interaction. Bragg resonance is a special resonant triad in which one of the constituent waves is the ocean's undulating bottom boundary. Here we show that, in the presence of an ocean current, two surface waves or a surface wave and an interfacial wave (wave existing at the ocean pycnocline) can undergo exponential growth.