Bian, N., Emslie, G. A., Stackhouse, D. J., and Kontar, E. P.: The formation
of a kappa-distribution accelerated electron populations in solar flares,
Astrophys. J., 796, 142, https://doi.org/10.1088/0004-637X/796/2/142, 2014.
Binsack, J. H.: Plasma studies with the IMP-2 satellite, Ph.D. thesis, MIT,
Massachusetts Institute of Technology, 1966.
Borges, E. P., Tsallis, C., Anãnõs, G. F. J., and De
Oliveira, P. M. C.: Nonequilibrium probabilistic dynamics at the logistic map
edge of chaos, Phys. Rev. Lett., 89, 254103,
https://doi.org/10.1103/PhysRevLett.89.254103, 2002.
Borland, L.: Option pricing formulas based on a non-Gaussian stock price
model, Phys. Rev. Lett., 89, 098701, https://doi.org/10.1103/PhysRevLett.89.098701,
2002.
Broiles, T. W., Burch, J. L., Chae, K., Clark, G., Cravens, T. E.,
Eriksson, A., Fuselier, S. A., Frahm, R. A., Gasc, S., Goldstein, R.,
Henri, P., Koenders, C., Livadiotis, G., Mandt, K. E., Mokashi, P.,
Nemeth, Z., Rubin, M., and Samara, M.: Statistical analysis of suprathermal
electron drivers at 67P/Churyumov–Gerasimenko, Mon. Not. R. Astron. Soc.,
462, S312–S322, 2016b.
Bryant, D. A.: Debye length in a kappa-distribution, J. Plasma Phys., 56,
87–93, https://doi.org/10.1017/S0022377800019115, 1996.
Carbary, J. F., Kane, M., Mauk, B. H., and Krimigis, S. M.: Using the kappa
function to investigate hot plasma in the magnetospheres of the giant
planets, J. Geophys. Res., 119, 8426–8447, 2014.
Chotoo, K., Schwadron, N. A., Mason, G. M., Zurbuchen, T. H., Gloeckler, G.,
Posner, A., Fisk, L. A., Galvin, A. B., Hamilton, D. C., and Collier, M. R.:
The suprathermal seed population for corotaing interaction region ions at
1 AU deduced from composition and spectra of
H+,
, and
He+ observed by Wind, J. Geophys. Res., 105, 23107–23122, 2000.
Christon, S. P.: A comparison of the Mercury and earth magnetospheres:
electron measurements and substorm time scales, Icarus, 71, 448–471, 1987.
Cranmer, S. R.: Suprathermal electrons in the solar corona: can nonlocal
transport explain heliospheric charge states?, Astrophys. J. Lett., 791, L31,
https://doi.org/10.1088/2041-8205/791/2/L31, 2014.
Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P.,
Gloeckler, G., Hamilton, D. C., and Lanzerotti, L. J.: Voyager 1 in the
foreshock, termination shock, and heliosheath, Science, 309, 2020–2024,
2005.
Dialynas, K., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N.,
and Brandt, P. C.: Energetic ion spectral characteristics in the Saturnian
magnetosphere using Cassini/MIMI measurements, J. Geophys. Res., 114, A01212,
https://doi.org/10.1029/2008JA013761, 2009.
Dos Santos, M. S., Ziebell, L. F., and Gaelzer, R.: Ion firehose instability
in a dusty plasma considering product-bi-kappa distributions for the plasma
particles, Phys. Plasmas, 23, 013705, https://doi.org/10.1063/1.4939885, 2016.
Dos Santos, R. J. V.: Generalization of Shannon's theorem for Tsallis
entropy, J. Math. Phys., 38, 4104–4107, 1997.
Du, J.: The nonextensive parameter and Tsallis distribution for
self-gravitating systems, EPL-Europhys. Lett., 67, 893–899, 2004.
Dzifčáková, E. and Dudík, J.: H to Zn ionization equilibrium
for the non-Maxwellian electron
κ-distributions: updated calculations,
Astrophys. J. Suppl. S., 206, https://doi.org/10.1088/0067-0049/206/1/6, 2013.
Dzifčáková, E., Dudík, J., Kotrč, P.,
Fárník, F., and Zemanová, A.: KAPPA: a package for synthesis of
optically thin spectra for the non-Maxwellian
κ-distributions based on
the Chianti database, Astrophys. J. Suppl. S., 217,
https://doi.org/10.1088/0067-0049/217/1/14, 2015.
Eslami, P., Mottaghizadeh, M., and Pakzad, H. R.: Nonplanar dust acoustic
solitary waves in dusty plasmas with ions and electrons following
a q-nonextensive distribution, Phys. Plasmas, 18, 102303,
https://doi.org/10.1063/1.3642639, 2011.
Fisk, L. A. and Gloeckler, G.: The case for a common spectrum of particles
accelerated in the heliosphere: observations and theory, J. Geophys. Res.,
119, 8733, 2014.
Formisano, V., Moreno, G., Palmiotto, F., and Hedgecock, P. C.: Solar wind
interaction with the Earth's magnetic field 1. Magnetosheath, J. Geophys.
Res., 78, 3714–3730, 1973.
Gibbs, J. W.: Elementary Principles in Statistical Mechanics, Scribner's
sons, New York, 1902.
Grabbe, C.: Generation of broadband electrostatic waves in Earth's
magnetotail, Phys. Rev. Lett., 84, 3614, https://doi.org/10.1103/PhysRevLett.84.3614,
2000.
Grassi, A.: A relationship between atomic correlation energy of neutral atoms
and generalized entropy, Int. J. Quantum Chem., 111, 2390–2397, 2010.
Habeck, M., Nilges, M., and Rieping, W.: Replica-exchange Monte Carlo scheme
for Bayesian data analysis, Phys. Rev. Lett., 94, 018105,
https://doi.org/10.1103/PhysRevLett.94.018105, 2005.
Hapgood, M., Perry, C., Davies, J., and Denton, M.: The role of suprathermal
particle measurements in CrossScale studies of collisionless plasma
processes, Planet. Space Sci., 59, 618–629, 2011.
Heerikhuisen, J., Pogorelov, N. V., Florinski, V., Zank, G. P., and le
Roux, J. A.: The effects of a k-distribution in the heliosheath on the global
heliosphere and ENA flux at 1 AU, Astrophys. J., 682, 679–689, 2008.
Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I., and Saini, N. S.:
Comment on “Mathematical and physical aspects of Kappa velocity
distribution” [Phys. Plasmas 14, 110702 (2007)], Phys. Plasmas, 16, 094701,
https://doi.org/10.1063/1.3213388, 2009.
Hou, S. Q., He, J. J., Parikh, A., Kahl, D., Bertulani, C. A., Kajino, T.,
Mathews, G. J., and Zhao, G.: Non-extensive statistics to the cosmological
lithium problem, Astrophys. J., 834, 165, https://doi.org/10.3847/1538-4357/834/2/165,
2017.
Jeffrey, N. L. S., Fletcher, L., and Labrosse, N.: First evidence of
non-Gaussian solar flare EUV spectral line profiles and accelerated
non-thermal ion motion, Astron. Astrophys., 590, A99,
https://doi.org/10.1051/0004-6361/201527986, 2016.
Jund, P., Kim, S. G., and Tsallis, C.: Crossover from extensive to
nonextensive behavior driven by long-range interactions, Phys. Rev. B, 52,
50, https://doi.org/10.1103/PhysRevB.52.50, 1995.
Jurac, S., McGrath, M. A., Johnson, R. E., Richardson, J. D.,
Vasyliunas, V. M., and Eviatar, A.: Saturn: search for a missing water
source, Geophys. Res. Lett., 29, 2172, https://doi.org/10.1029/2002GL015855, 2002.
Khinchin, A. I.: Mathematical Foundations of Information Theory, Dover
Publications, New York, 1957.
Kletzing, C. A., Scudder, J. D., Dors, E. E., and Curto, C.: Auroral source
region: plasma properties of the high latitude plasma sheet, J. Geophys.
Res., 108, 1360, https://doi.org/10.1088/0741-3335/54/12/124001, 2003.
Kourakis, I., Sultana, S., and Hellberg, M. A.: Dynamical characteristics of
solitary waves, shocks and envelope modes in kappa-distributed non-thermal
plasmas: an overview, Plasma Phys. Contr. F., 54, 124001,
https://doi.org/10.1088/0741-3335/54/12/124001, 2012.
Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Cheng, A.
F., Gloeckler, G., Hamilton, D. C., Keath, E. P., Lanzerotti, L. J., Mauk, B.
H., and Van Allen, J. A.: Hot plasma and energetic particles in Neptune's
magnetosphere, Science, 246, 1483, 1989.
Laming, J. M., Moses, J. D., Ko, Y.-K., Ng, C. K., Rakowski, C. E., and
Tylka, A. J.: On the remote detection of suprathermal ions in the solar
corona and their role as seeds for solar energetic particle production,
Astrophys. J., 770, 73, https://doi.org/10.1088/0004-637X/770/1/73, 2013.
Le Roux, J. A., Webb, G. M., Shalchi, A., and Zank, G. P.: A generalized
nonlinear guiding center theory for the collisionless anomalous perpendicular
diffusion of cosmic rays, Astrophys. J., 716, 671–692, 2010.
Livadiotis, G.: Approach on Tsallis statistical interpretation of
hydrogen-atom by adopting the generalized radial distribution function,
J. Math. Chem., 45, 930–939, 2009.
Livadiotis, G.: Lagrangian temperature: derivation and physical meaning for
systems described by kappa distributions, Entropy, 16, 4290–4308, 2014.
Livadiotis, G.: Statistical background and properties of kappa distributions
in space plasmas, J. Geophys. Res., 120, 1607–1619, 2015a.
Livadiotis, G.: Kappa distribution in the presence of a potential energy,
J. Geophys. Res., 120, 880–903, 2015b.
Livadiotis, G.: Kappa and q indices: dependence on the degrees of freedom,
Entropy, 17, 2062, https://doi.org/10.1209/0295-5075/113/10003, 2015c.
Livadiotis, G.: Curie law for systems described by kappa distributions,
EPL-Europhys. Lett., 113, 10003, https://doi.org/10.1209/0295-5075/113/10003, 2016.
Livadiotis, G.: Kappa Distribution: Theory and Applications in Plasmas,
Elsevier, the Netherlands, UK, US, 2017a.
Livadiotis, G.: On the simplification of statistical mechanics for space
plasmas, Entropy, 19, 285, https://doi.org/10.3390/e19060285, 2017b.
Livadiotis, G.: Using kappa distributions to identify the potential energy,
J. Geophys. Res., https://doi.org/10.1002/2017JA024978, 2018.
Livadiotis, G. and McComas, D. J.: Beyond kappa distributions: exploiting
Tsallis statistical mechanics in space plasmas, J. Geophys. Res., 114,
A11105, https://doi.org/10.1029/2009JA014352, 2009.
Livadiotis, G. and McComas, D. J.: Measure of the departure of the
q-metastable stationary states from equilibrium, Phys. Scripta, 82, 035003,
https://doi.org/10.1088/0031-8949/82/03/035003, 2010b.
Livadiotis, G. and McComas, D. J.: The influence of pick-up ions on space
plasma distributions, Astrophys. J., 738, 64, ,
https://doi.org/10.1088/0004-637X/738/1/64, 2011a.
Livadiotis, G. and McComas, D. J.: Invariant kappa distribution in space
plasmas out of equilibrium, Astrophys. J., 741, 88,
https://doi.org/10.1088/0004-637X/741/2/88, 2011b.
Livadiotis, G. and McComas, D. J.: Non-equilibrium thermodynamic processes:
space plasmas and the inner heliosheath, Astrophys. J., 749, 11,
https://doi.org/10.1088/0004-637X/749/1/11, 2012.
Livadiotis, G., McComas, D.J, Dayeh, M. A., Funsten, H. O., and
Schwadron, N. A.: First sky map of the inner heliosheath temperature using
IBEX spectra, Astrophys. J., 734, 1, https://doi.org/10.1088/0004-637X/734/1/1, 2011.
Livadiotis, G., McComas, D. J., Randol, B., Möbius, E., Dayeh, M. A.,
Frisch, P. C., Funsten, H. O., Schwadron, N. A., and Zank, G. P.: Pick-up ion
distributions and their influence on ENA spectral curvature, Astrophys. J.,
751, 64, https://doi.org/10.1088/0004-637X/751/1/64/meta, 2012.
Livadiotis, G., McComas, D. J., Schwadron, N. A., Funsten, H. O., and
Fuselier, S. A.: Pressure of the proton plasma in the inner heliosheath,
Astrophys. J., 762, 134, https://doi.org/10.1088/0004-637X/762/2/134, 2013.
Livadiotis, G., Assas., L., Dennis, B., Elaydi, S., and Kwessi, E.:
A discrete time host-parasitoid model with an Allee effect, J. Biol. Dynam.,
9, 34–51, 2015.
Livadiotis, G., Assas., L., Dennis, B., Elaydi, S., and Kwessi, E.: Kappa
function as a unifying framework for discrete population modelling, Nat.
Resour. Model., 29, 130–144, 2016.
Livi, R., Goldstein, J., Burch, J. L., Crary, F., Rymer, A. M.,
Mitchell, D. G., and Persoon, A. M.: Multi-instrument analysis of plasma
parameters in Saturn's equatorial, inner magnetosphere using corrections for
spacecraft potential and penetrating background radiation, J. Geophys. Res.,
119, 3683, https://doi.org/10.1002/2013JA019616, 2014.
Malacarne, L. C., Mendes, R. S., and Lenzi, E. K.: Average entropy of
a subsystem from its average Tsallis entropy, Phys. Rev. E, 65, 017106,
https://doi.org/10.1103/PhysRevE.65.046131, 2001.
Mann, G., Classen, H. T., Keppler, E., and Roelof, E. C.: On electron
acceleration at CIR related shock waves, Astron. Astrophys., 391, 749–756,
2002.
Marsch, E.: Kinetic physics of the solar corona and solar wind, Living Rev.
Sol. Phys., 3, 1, https://doi.org/10.12942/lrsp-2006-1, 2006.
Mauk, B. H., Krimigis, S. M., Keath, E. P., Cheng, A. F., Armstrong, T. P.,
Lanzerotti, L. J., Gloeckler, G., and Hamilton, D. C.: The hot plasma and
radiation environment of the Uranian magnetosphere, J. Geophys. Res., 92,
15283, https://doi.org/10.1029/JA092iA13p15283, 1987.
Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P.,
Roelof, E. C., Williams, D. J., Krimigis, S. M., and Lagg, A.: Energetic ion
characteristics and neutral gas interactions in Jupiter's magnetosphere,
J. Geophys. Res., 109, A09S12, https://doi.org/10.1029/JA092iA13p15283, 2004.
Milovanov, A. V. and Zelenyi, L. M.: Functional background of the Tsallis
entropy: “coarse-grained” systems and “kappa” distribution functions,
Nonlin. Processes Geophys., 7, 211–221, https://doi.org/10.5194/npg-7-211-2000, 2000.
Moncuquet, M., Bagenal, F., and Meyer-Vernet, N.: Latitudinal structure of
the outer Io plasma torus, J. Geophys. Res., 108, 1260,
https://doi.org/10.1029/2001JA900124, 2002.
Montemurro, A.: Beyond the Zipf–Mandelbrot law in quantitative linguistics,
Physica A, 300, 567–578, 2001.
Nicholls, D. C., Dopita, M. A., and Sutherland, R. S.: Resolving the electron
temperature discrepancies in H II regions and planetary nebulae:
κ-distributed electrons, Astrophys. J., 752, 148,
https://doi.org/10.1088/0004-637X/752/2/148, 2012.
Nicholls, D. C., Dopita, M. A., Sutherland, R. S., Kewley, L. J., and
Palay, E.: Measuring nebular temperatures: the effect of new collision
strengths with equilibrium and
κ-distributed electron energies,
Astrophys. J. Suppl. S., 207, 21, https://doi.org/10.1088/0067-0049/207/2/21, 2013.
Nicolaou, G. and Livadiotis, G.: Misestimation of temperature when applying
Maxwellian distributions to space plasmas described by kappa distributions,
Astrophys. Space Sci., 361, 359, https://doi.org/10.1007/s10509-016-2949-z, 2016.
Ogasawara, K., Angelopoulos, V., Dayeh, M. A., Fuselier, S. A.,
Livadiotis, G., McComas, D. J., and McFadden, J. P.: Characterizing the
dayside magnetosheath using ENAs: IBEX and THEMIS observations, J. Geophys.
Res., 118, 3126–3137, 2013.
Ogasawara, K., Dayeh, M. A., Funsten, H. O., Fuselier, S. A., Livadiotis, G.,
and McComas, D. J.: Interplanetary magnetic field dependence of the
suprathermal energetic neutral atoms originated in subsolar magnetopause,
J. Geophys. Res., 120, 964–972, 2015.
Ogasawara, K., Livadiotis, G., Grubbs, G. A., Jahn, J.-M., Michell, R.,
Samara, M., Sharber, J. R., and Winningham, J. D.: Properties of suprathermal
electrons associated with discrete auroral arcs, Geophys. Res. Lett., 44,
3475–3484, 2017.
Olbert, S.: Summary of experimental results from M.I.T. detector on IMP-1,
in: Physics of the Magnetosphere, edited by: Carovillano, R. L.,
McClay, J. F., and Radoski, H. R., Springer, New York, 641, 1968.
Ourabah, K., Ait Gougam, L., and Tribeche, M.: Nonthermal and suprathermal
distributions as a consequence of superstatistics, Phys. Rev. E, 91, 012133,
https://doi.org/10.1103/PhysRevE.91.012133, 2015.
Owocki, S. P. and Scudder, J. D.: The effect of a non-Maxwellian electron
distribution on oxygen and iron ionization balances in the solar corona,
Astrophys. J., 270, 758–768, 1983.
Pavlos, G. P., Malandraki, O. E., Pavlos, E. G., Iliopoulos, A. C., and
Karakatsanis, L. P.: Non-extensive statistical analysis of magnetic field
during the March 2012 ICME event using a multi-spacecraft approach,
Physica A, 464, 149–181, 2016.
Pierrard, V. and Pieters, M.: Coronal heating and solar wind acceleration for
electrons, protons, and minor ions, obtained from kinetic models based on
kappa distributions, J. Geophys. Res., 119, 9441, https://doi.org/10.1002/2014JA020678,
2015.
Pisarenko, N. F., Budnik, E. Yu., Ermolaev, Yu. I., Kirpichev, I. P.,
Lutsenko, V. N., Morozova, E. I., and Antonova, E. E.: The ion differential
spectra in outer boundary of the ring current: November 17, 1995 case study,
J. Atmos. Sol.-Terr. Phy., 64, 573–583, 2002.
Raadu, M. A. and Shafiq, M.: Test charge response for a dusty plasma with
both grain size distribution and dynamical charging, Phys. Plasmas, 14,
012105, https://doi.org/10.1063/1.2431354, 2007.
Randol, B. M. and Christian, E. R.: Simulations of plasma obeying Coulomb's
law and the formation of suprathermal ion tails in the solar wind,
J. Geophys. Res., 119, 7025–7037, 2014.
Randol, B. M. and Christian, E. R.: Coupling of charged particles via
Coulombic interactions: numerical simulations and resultant kappa-like
velocity space distribution functions, J. Geophys. Res., 121, 1907–1919,
2016.
Raymond, J. C., Winkler, P. F., Blair, W. P., Lee, J.-J., and Park, S.:
Non-Maxwellian
Hα profiles in Tycho's supernova remnant,
Astrophys. J., 712, 901, https://doi.org/10.1086/589645, 2010.
Rubab, N. and Murtaza, G.: Debye length in non-Maxwellian plasmas, Phys.
Scripta, 74, 145, https://doi.org/10.1088/0031-8949/74/2/001, 2006.
Ruseckas, J.: Probabilistic model of N correlated binary random variables and
non-extensive statistical mechanics, Phys. Lett. A, 379, 654–659, 2015.
Saito, S., Forme, F. R. E., Buchert, S. C., Nozawa, S., and Fujii, R.:
Effects of a kappa distribution function of electrons on incoherent scatter
spectra, Ann. Geophys., 18, 1216–1223, https://doi.org/10.1007/s00585-000-1216-2,
2000.
Salazar, R. and Toral, R.: Scaling laws for a system with long-range
interactions within Tsallis statistics, Phys. Rev. Lett., 83, 4233–4236,
1999.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J.,
27, 379–423, 623–656, 1948.
Štverák, S., Maksimovic, M., Travnicek, P. M., Marsch, E.,
Fazakerley, A. N., and Scime, E. E.: Radial evolution of nonthermal electron
populations in the low-latitude solar wind: Helios, Cluster, and Ulysses
observations, J. Geophys. Res., 114, A05104, https://doi.org/10.1029/2008JA013883,
2009.
Tirnakli, U. and Borges, E. P.: The standard map: from Boltzmann–Gibbs
statistics to Tsallis statistics, Sci. Rep.-UK, 6, 23644,
https://doi.org/10.1038/srep23644, 2016.
Tribeche, M., Mayout, S., and Amour, R.: Effect of ion suprathermality on
arbitrary amplitude dust acoustic waves in a charge varying dusty plasma,
Phys. Plasmas, 16, 043706, https://doi.org/10.1063/1.3118592, 2009.
Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics, J. Stat.
Phys., 52, 479–487, 1988.
Tsallis, C.: Introduction to Nonextensive Statistical Mechanics, Springer,
New York, 2009.
Umarov, S., Tsallis, C., and Steinberg, S.: On a
q-central limit theorem
consistent with nonextensive statistical mechanics, Milan J. Math., 76, 307,
https://doi.org/10.1007/s00032-008-0087-y, 2008.
Vasyliũnas, V. M.: A survey of low-energy electrons in the evening sector
of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839–2884,
1968.
Villain, J.: On the long-range interactions and non-extensive systems,
Scientifica Acta, 2, 93–99, 2008.
Viñas, A. F., Moya, P. S., Navarro, R., and Araneda, J. A.: The role of
higher-order modes on the electromagnetic whistler-cyclotron wave
fluctuations of thermal and non-thermal plasmas, Phys. Plasmas, 21, 012902,
https://doi.org/10.1063/1.4861865, 2014.
Viñas, A. F., Moya, P. S., Navarro, R. E., Valdivia, J. A.,
Araneda, J. A., and Muñoz, V.: Electromagnetic fluctuations of the
whistler-cyclotron and firehose instabilities in a Maxwellian and
Tsallis-kappa-like plasma, J. Geophys. Res., 120, 3307–3317, 2015.
Wang, C.-P., Lyons, L. R., Chen, M. W., Wolf, R. A., and Toffoletto, F. R.:
Modeling the inner plasma sheet protons and magnetic field under enhanced
convection, J. Geophys. Res., 108, 1074, https://doi.org/10.1029/2002JA009620, 2003.
Xiao, F., Shen, C., Wang, Y., Zheng, H., and Whang, S.: Energetic electron
distributions fitted with a kappa-type function at geosynchronous orbit,
J. Geophys. Res., 113, A05203, https://doi.org/10.1088/0741-3335/50/6/062001, 2008.
Yamano, T.: Some properties of
q-logarithmic and
q-exponential functions
in Tsallis statistics, Physica A, 305, 486–496, 2002.
Yoon, P. H.: Electron kappa distribution and quasi-thermal noise, J. Geophys.
Res., 119, 7074–7087, 2014.
Yoon, P. H., Rhee, T., and Ryu, C. M.: Self-consistent formation of electron
κ distribution: 1. Theory, J. Geophys. Res., 111, A09106,
https://doi.org/10.1029/2006JA011681, 2006.
Yoon, P. H., Ziebell, L. F., Gaelzer, R., Lin, R. P., and Wang, L.: Langmuir
turbulence and suprathermal electrons, Space Sci. Rev., 173, 459–489, 2012.
Zank, G. P.: Faltering steps into the galaxy: the boundary regions of the
heliosphere, Annu. Rev. Astron. Astr., 53, 449, https://doi.org/10.1029/2006JA011681,
2015.
Zank, G. P., Heerikhuisen, J., Pogorelov, N. V., Burrows, R., and
McComas, D. J.: Microstructure of the heliospheric termination shock:
implications for energetic neutral atom observations, Astrophys. J., 708,
1092, https://doi.org/10.1088/0004-637X/708/2/1092, 2010.
Zhang, Y., Liu, X.-W., and Zhang, B.: H-I free-bound emission of planetary
nebulae with large abundance discrepancies: two-component models vs.
κ-distributed electrons, Astrophys. J., 780, 93,
https://doi.org/10.1088/0004-637X/780/1/93., 2014.
Zirnstein, E. J. and McComas, D. J.: Using kappa functions to characterize
outer heliosphere proton distributions in the presence of charge-exchange,
Astrophys. J., 815, 31, https://doi.org/10.1088/0004-637X/815/1/31, 2015.
Zouganelis, I.: Measuring suprathermal electron parameters in space plasmas:
implementation of the quasi-thermal noise spectroscopy with kappa
distributions using in situ Ulysses/URAP radio measurements in the solar
wind, J. Geophys. Res., 113, A08111, https://doi.org/10.1029/2007JA012979, 2008.