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Abstract. Kappa distributions describe velocities and ener-
gies of plasma populations in space plasmas. The statistical
origin of these distributions is associated with the framework
of nonextensive statistical mechanics. Indeed, the kappa dis-
tribution is derived by maximizing the q entropy of Tsallis,
under the constraints of the canonical ensemble. However,
the question remains as to what the physical origin of this
entropic formulation is. This paper shows that the q entropy
can be derived by adapting the additivity of energy and en-
tropy.

1 Introduction

Space plasmas are collisionless and correlated particle sys-
tems characterized by a non-Maxwellian behavior, typically
described by the formulations of kappa distributions. The ori-
gin of this vastly different statistical behavior between clas-
sical systems and space plasmas is the manifestation of cor-
relations between the plasma particles. These systems are
characterized by long-range interactions that induce corre-
lations, resulting in a collective behavior among particles
(e.g., see Jund et al., 1995; Salazar and Toral, 1999; Vil-
lain, 2008; Tsallis, 2009; Grassi, 2010; Tirnakli and Borges,
2016). The induction of any type of correlations among par-
ticles (more accurately, among particle energies or particle
phase space) departs the system from thermal equilibrium
to be restabilized into other stationary states out of ther-
mal equilibrium described by kappa distributions, or com-
binations/superposition thereof. (Note that as we will see
in Sect. 3, single kappa distributions induce a certain type
of correlation, which, however, can be further generalized
when a combination or superposition of kappa distributions

is taken into account; e.g., see Spectral Statistics, Tsallis,
2009, Linear/Nonlinear superposition, chap. 6.2.1; Livadi-
otis and McComas, 2013a, Appendix A; Livadiotis, 2017a,
chap. 4.3.4.)

Kappa distributions describe numerous space plasma pop-
ulations. Several examples are the following: (i) the inner
heliosphere, including solar wind (e.g., Maksimovic et al.,
1997; Pierrard et al., 1999; Mann et al., 2002; Marsch, 2006;
Zouganelis, 2008; Štverák et al., 2009; Livadiotis and Mc-
Comas, 2013a; Yoon, 2014; Pierrard and Pieters, 2015; Pav-
los et al., 2016), solar spectra (e.g., Dzifčáková and Dudík,
2013; Dzifčáková, et al., 2015), solar corona (e.g., Owocki
and Scudder, 1983; Vocks et al., 2008; Lee et al., 2013;
Cranmer, 2014), solar energetic particles (e.g., Xiao et al.,
2008; Laming et al., 2013), corotating interaction regions
(e.g., Chotoo et al., 2000), and related solar flares (e.g., Mann
et al., 2009; Livadiotis and McComas, 2013b; Bian et al.,
2014; Jeffrey et al., 2016); (ii) planetary magnetospheres,
including magnetosheath (e.g., Formisano et al., 1973; Oga-
sawara et al., 2013), magnetopause (e.g., Ogasawara et al.,
2015), magnetotail (e.g., Grabbe, 2000), ring current (e.g.,
Pisarenko et al., 2002), plasma sheet (e.g., Christon, 1987;
Wang et al., 2003; Kletzing et al., 2003), magnetospheric
substorms (e.g., Hapgood et al., 2011), aurora (e.g., Oga-
sawara et al., 2017), magnetospheres of giant planets, such as
Jovian (e.g., Collier and Hamilton, 1995; Mauk et al., 2004),
Saturnian (e.g., Dialynas et al., 2009; Livi et al., 2014; Car-
bary et al., 2014), Uranian (e.g., Mauk et al., 1987), and Nep-
tunian (Krimigis et al., 1989), magnetospheres of planetary
moons, such as Io (e.g., Moncuquet et al., 2002) and Ence-
ladus (e.g., Jurac et al., 2002), and cometary magnetospheres
(e.g., Broiles et al.„ 2016a, b); (iii) the outer heliosphere
and the inner heliosheath (e.g., Decker and Krimigis, 2003;
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Decker et al., 2005; Heerikhuisen et al., 2008, 2015; Zank
et al., 2010; Livadiotis et al., 2011, 2012; 2013; Livadiotis
and McComas, 2011a, 2012; 2013c; Livadiotis, 2014, 2016;
Fuselier et al., 2014; Zirnstein and McComas, 2015; Zank,
2015); (iv) beyond the heliosphere, including HII regions
(e.g., Nicholls et al., 2012), planetary nebula (e.g., Nicholls
et al., 2013; Zhang et al., 2014), and supernova magneto-
spheres (e.g., Raymond et al., 2010), and on cosmological
scales (e.g., Hou et al., 2017); and (v) other space-plasma-
related analyses (e.g., Milovanov and Zelenyi, 2000; Saito
et al., 2000; Du, 2004; Yoon et al., 2006, 2012; Raadu and
Shafiq, 2007; Livadiotis, 2009, 2015a, b, c, 2018; Tribeche
et al., 2009; Hellberg et al., 2009; Livadiotis and McComas,
2010b, 2014; Baluku et al., 2010; Le Roux et al., 2010; Es-
lami et al., 2011; Kourakis et al., 2012; Randol and Chris-
tian, 2014, 2016; Varotsos et al., 2014; Fisk and Gloeckler,
2014; Viñas et al., 2014, 2015; Ourabah et al., 2015; Dos
Santos et al., 2016; Nicolaou and Livadiotis, 2016). (See also
the book Livadiotis, 2017a, and references therein.) Finally,
it has to be noted that the kappa distributions and its asso-
ciated statistical mechanics have been applied in a variety
of disciplines other than space and plasma physics. A few
examples are the following: in sociometry, e.g., the internet
(Abe and Suzuki, 2003) and in citation networks of scientific
papers (Tsallis and De Albuquerque, 2000) and urban ag-
glomeration (Malacarne et al., 2001); in linguistics (Monte-
murro, 2001); in economics (Borland, 2002); in biochemistry
(Andricioaei and Straub, 1996); in applied statistics (Habeck
et al., 2005); in nonlinear dynamics (Borges et al., 2002); in
physical chemistry (Livadiotis, 2009); and in ecology (Liva-
diotis et al., 2015, 2016).

Empirical kappa distributions were introduced in mid-
1960s by Binsack (1966), Olbert (1968), and Vasyliũnas
(1968), while their connection with statistical mechanics was
shown and studied in detail about half a century later (see
Livadiotis and McComas, 2009, and references therein). In
particular, the statistical origin of these distributions is now
widely accepted to be determined within the framework of
nonextensive statistical mechanics (Tsallis, 2009). This is
a consistent generalization of the classical statistical mechan-
ics, which is based on a monoparametric (q index) entropic
formula (Tsallis, 1988). The theoretical q exponential dis-
tribution, which results from the maximization of entropy
in the canonical ensemble, has the same formulation as the
empirical kappa distribution; the two distributions are iden-
tical under the transformation of their characteristic indices
(q = 1+ 1/κ).

Though a consistent connection of the mathematical
model of kappa distributions has been attained with the phys-
ical means of entropy maximization, this does not precisely
answer the main question regarding the origin of these distri-
butions. We have only shifted the modeling from the distri-
butions to the entropic formulation. Therefore, we may un-
derstand now that the statistical origin of kappa distributions
is given by the Tsallis entropy maximization in the canonical

ensemble, but still, the origin of this specific entropic formu-
lation remains unknown.

Certainly, there are various mechanisms responsible for
generating kappa distributions in space and other plasmas,
for example, the presence of pickup ions (Livadiotis and Mc-
Comas, 2010a, 2011a) or weak turbulence (Yoon et al., 2012;
Yoon, 2014). Moreover, kappa distributions belong to the
framework of nonextensive statistical mechanics. Thus, once
a kappa distribution is generated and stabilized into a plasma
population, the whole “tool package” of nonextensive sta-
tistical mechanics is applicable for describing the statistical
physics of this population; for instance, the entropy is given
by the Tsallis formulation, while the temperature can be de-
termined by the mean kinetic energy.

Here, we do not argue which mechanisms generate kappa
distributions in space plasmas, rather the physical reasons
that these distributions sustain themselves in space plasmas
once generated. The typical answer is that this is an ef-
fect of the presence and preservation of correlations in the
collisionless environment that governs space plasmas. (For
particle systems such as space plasmas, collisions can de-
stroy correlations, and thus, their collective behavior.) The
collisionless environment conserves the energy. Moreover,
weakly coupled plasmas (mutual electron and ion potential
energy is small compared to the average kinetic energy) can
be described as ideal gases. Interparticle energy terms can
be ignored, leading to the additivity of energy: the energy of
a multi-particle state is the sum of the energies of all the one-
particle states involved. On the other hand, the preservation
of local correlations among particles creates a conceptual
separation of particles in correlation clusters. Debye spheres
are correlation clusters that may include up to trillions of par-
ticles since space plasmas are weakly coupled (Bryant, 1996;
Rubab and Murtaza, 2006; Gougam and Tribeche, 2011; Li-
vadiotis and McComas, 2014). This structure can lead to the
additivity of entropy: the entropy of a multi-particle state
is the sum of the entropies of all the one-particle states in-
volved. (Note that ideal gases are considered to have (i) zero
interparticle interactions, and (ii) zero particle correlations.
While ideal gases are characterized by short-range interac-
tions that cannot induce correlations among particles, space
plasmas have interactions weak enough to be negligible but
with a long enough range that correlations can be induced.)

The purpose of this paper is to show that there is a deeper
connection of Tsallis q entropy and space plasmas: namely,
we will show that two simple first principles, such as the ad-
ditive energy and additive entropy, which apply to plasma
particle populations, are sufficient for indicating the specific
formula of q entropy (Fig. 1). Therefore, the main objective
of this work is to demonstrate the theory which determines
that the entropic form given by the q-entropy formula pro-
posed originally by Tsallis (1988) follows from certain as-
sumptions regarding the (microscopic) state of the system.
The importance of this discussion for the (space) plasma
physics community resides mostly in the fact that the kappa
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Figure 1. The infographic indicates the following triplet of con-
cepts: (i) additive energy, (ii) additive entropy, and (iii) BG or Tsal-
lis entropic formulation. Given any two out of the three features,
the third can be derived. It is already known that BG or Tsallis en-
tropic formulations can lead to additive entropy if the energy is also
additive (red arrow 2). In the same way, it can be shown that these
entropic formulations can lead to additive energy if the entropy is
additive (purple arrow 1). The objective here is to show that the
entropic formula can be derived from the additivity of energy and
entropy (blue arrow 3).

velocity/energy distribution functions, ubiquitously observed
in space and astrophysical environments, can be derived from
the maximization of the q entropy, under the constraints of
a canonical ensemble.

In Sect. 2, we describe the physical motive of this paper in
detail. In Sect. 3, we show in detail a similar property for both
the entropic formalisms of Boltzmann–Gibbs (BG) and Tsal-
lis: the entropy is non-additive in general for some arbitrary
probability distribution, but it can become additive specifi-
cally for the canonical probability distribution (the one that
maximizes the corresponding entropy). In Sect. 4, we show
how we can determine the entropic formula appropriate for
describing the plasma particle populations, simply by setting
two first principles’ properties, obvious for collisionless plas-
mas: energy and entropy are additive, at least macroscopi-
cally. Finally, Sect. 5 briefly summarizes the conclusions.

2 Physical motive

Classical BG statistical mechanics characterizes systems
with no correlations among particle velocities or energies.
Therefore, the joint two-particle probability distribution can
be expressed as the product of the one-particle identical and
independent discrete distributions, i.e., labeling the two par-
ticles with A and B, pA+B

ij = pA
i ·p

B
j . Hereafter, we consider

a particle system described by a discrete energy spectrum
{εk}

W
k=1, which is associated with a discrete probability dis-

tribution {pk}Wk=1. The same semantics is used when the sys-
tem is separated in two subsystems, A and B, where the two-
particle distribution describes a two-particle state, with one
particle at each subsystem. The logarithm of the probability
is an additive function, lnpA+B

ij = lnpA
i + lnpB

j , from which
we obtain the additivity of entropy (here the BG entropy),
SA+B

= SA
+ SB. For special cases, however, where the in-

dependence relationship does not apply, pA+B
ij 6= pA

i ·p
B
j , the

entropy is non-additive, SA+B
6= SA

+SB. The logical recip-
rocant to the statements above is provided by the uniqueness
theorem of Shannon (1948) and Khinchin (1957) that showed
that under the assumption of the additivity of entropy (and
other basic properties of entropy), the sufficient and neces-
sary entropic form is given by the BG formula.

Nonextensive statistical mechanics characterizes systems
with correlations among particles, pA+B

ij 6= pA
i ·p

B
j . For spe-

cial systems, however, where the independence relationship
still applies, the entropy (here the q entropy) is non-additive,
SA+B

6= SA
+ SB; in particular, a square, nonlinear term is

added to the summation, SA+B
= SA

+ SB
+ (1− q)SASB,

for some value of the entropic parameter q (where we set the
Boltzmann constant kB to 1). Note that the logical recipro-
cant also exists for this case, as shown by Dos Santos (1997)
and Abe (2000); namely, under the assumption of the non-
additive property mentioned (and other basic properties of
entropy), the sufficient and necessary entropic form is given
by the q entropic formula of Tsallis (1988).

Another property that is related with the additivity but is
even more subtle and difficult to ascertain is the extensivity
of the entropy. A non-additive entropy may be assumed to
be also nonextensive, but it is the inverse assumption that
is always correct; i.e., nonextensivity implies non-additivity.
Nevertheless, certain correlations, expressed by the proba-
bility relationship pA+B

ij = g−1
[g(pA

i )+ g(p
B
j )] for a func-

tion g, can make the Tsallis entropy additive, and thus, re-
cover its extensivity (e.g., Tsallis et al., 2005; Ruseckas,
2015). (Note that in his book, Tsallis (2009) goes to large
lengths to show that it is possible to find systems for which
the BG entropy is not extensive. On the other hand, he argues
that there are certain systems for which the entropic form can
be extensive, for certain values of the entropic index q. In
fact, he mentions in the preface that the term “nonextensive
entropy” is somewhat incorrect in this sense, but that it stuck
for historical reasons.)

The two statistical formalisms, classical BG and Tsallis
nonextensive, have the common property that their entropy
becomes additive for a specific function g in the relation-
ship pA+B

ij = g−1
[g(pA

i )+ g(p
B
j )], that is, g(x)∝ ln(x) and

g(x)∝ (xq−1
− 1)/(q − 1), respectively (the latter is related

to the q deformed logarithm; see Silva et al., 1998; Yamano,
2002).

It is important that the above probability relationship is
a characteristic feature of the canonical probability distribu-
tion in both the formalisms. In other words, the probability
distribution that maximizes the BG entropy under the con-
straints of the canonical ensemble conforms to the correla-
tions expressed by g(x)∝ ln(x) or pA+B

ij = pA
i ·p

B
j , which

simply means zero correlation (due to the factorization of the
exponentials; Livadiotis and McComas, 2011b) that makes
the entropy additive. Also, the probability distribution that
maximizes the Tsallis entropy under the same constraints
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(i.e., q exponential or kappa distribution) conforms to the
specific correlations expressed by g(x)∝ (xq−1

−1)/(q−1)
or (pA+B

ij )q−1
= (pA

i )
q−1
+(pB

j )
q−1
−1, which again makes

the entropy additive. In Sect. 3 we show this similar property
of the two statistical formalisms in detail.

Then, we may ask the following question: is the property
of BG and Tsallis entropies described above a general feature
of any physically meaningful entropic function? Or can we
reverse the question, and ask which specific entropic func-
tion follows the above properties? It will be really intriguing
if we can determine the entropic formula appropriate for de-
scribing the plasma particle populations, simply by setting
the following two first principles’ properties: (1) additive en-
ergy, (2) additive entropy; i.e., the probability distribution
derived by maximizing the entropy under the constraints of
the canonical ensemble makes the entropy additive. This will
be the main purpose of this paper and will be examined in
Sect. 4.

3 Canonical ensemble distributions with additive
energy lead to additive entropy

3.1 The Gibbs’ path

The Gibbs’ path (1902) for the maximization of the entropy
S(p1,p2, . . .,pW ) under the constraints of a canonical en-
semble (i.e., (i) normalization 1=

∑W
k=1pk and (ii) fixed

internal energy U =
∑W
k=1pkεk) involves maximizing the

functional

G(p1,p2, . . .,pW )= S(p1,p2, . . .,pW )+ λ1
∑W

k=1
pk

+ λ2
∑W

k=1
pkεk. (1)

Next, we examine the BG and Tsallis entropic formulations.

3.2 BG entropy

First, we start from the classical case of BG entropy

S(p1,p2, . . .,pW )=−

W∑
k=1

pk ln(pk), (2)

where we ignored the Boltzmann constant kB for simplicity.
Then, setting (∂/∂pj )G(p1,p2, . . .,pW )= 0 to

G(p1,p2, . . .,pW )= −

W∑
k=1

pk ln(pk)+ λ1
∑W

k=1
pk

+ λ2
∑W

k=1
pkεk, (3)

we find

pj (εj )= exp(λ1− 1) · exp(λ2εj ). (4)

We may write Eq. (4) in a logarithmic form, lnpj = λ2εj +

λ1−1. Then, we separate the particle system into two parts, A

and B, so that each part is a new subsystem for which Eq. (4)
holds:

lnpA
i = λ2ε

A
i + λ1− 1 and lnpB

j = λ2ε
B
j + λ1− 1. (5)

The whole system is characterized by the joint probability,
pA+B
ij , meaning the probability of a particle in the subsys-

tem A of residing in the state i and a particle in the sub-
system B of residing in the state j . This is related with the
energy εA+B

ij of the two-particle state,

lnpA+B
ij = λ2ε

A+B
ij + λ1− 1. (6)

Trivially, the energy of the two-particle state energy εA+B
ij

equals the summation of the energy of each particle (since
no interparticle force is considered); i.e., the system’s energy
is additive:

εA+B
ij = εA

i + ε
B
j . (7)

Hence, by eliminating energies from Eqs. (5) and (6), we find

lnpA+B
ij + (λ1− 1)= λ2ε

A
i + (λ1− 1)+ λ2ε

B
j + (λ1− 1)

= lnpA
i + lnpB

j or (8)

pA+B
ij = pA

i ·p
B
j · e
− (λ1−1). (9)

At this point we recall that the Lagrange multipliers, λ1
and λ2, are related with the partition function Z = e− (λ1−1)

and the inverse temperature β =−λ2, respectively, and they
are not necessarily equal for the two subsystems A and B,
or the whole system A+B. Nevertheless, the logarithm of
the partition function or (λ1− 1) is an extensive parameter,
i.e., (λ1−1)A+B

= (λ1−1)A+ (λ1−1)B, while the temper-
ature is not an extensive parameter and can be considered the
same: λA+B

2 = λA
2 = λ

B
2 . Then, instead of Eqs. (8) and (9),

we obtain

lnpA+B
ij = λ2ε

A+B
ij + (λ1− 1)A+B

= λ2ε
A
i + (λ1− 1)A+ λ2ε

B
j + (λ1− 1)B

= lnpA
i + lnpB

j , (10)

which clearly shows that the canonical probabilities are in-
dependent:

ln
(
pA+B
ij

)
= ln

(
pA
i

)
+ ln

(
pB
j

)
⇒ pA+B

ij = pA
i ·p

B
j . (11)

Equation (9) indicates that the result in Eq. (11) can be ob-
tained simply by setting λ1 = 1. Certainly, this restricts the
generality, but it can be used as a trick to simplify the cal-
culations. Furthermore, we can easily obtain the additivity of
entropy. Indeed, applying the operator

∑W
i=1
∑W
j=1p

A+B
ij × to
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both sides of Eq. (11), we obtain

pA+B
ij lnpA+B

ij = pA+B
ij lnpA

i +p
A+B
ij lnpB

j

⇒−

W∑
i=1

W∑
j=1

pA+B
ij lnpA+B

ij =−

W∑
i=1

pA
i ln

(
pA
i

)

−

W∑
j=1

pB
j ln

(
pB
j

)
(12)

because
∑W
j=1p

A+B
ij = pA

i and
∑W
i=1p

A+B
ij = pB

j . Hence,
we arrive at the additivity of the entropy of the system to
the entropies of the subsystems,

SA+B
= SA

+ SB. (13)

3.3 Tsallis entropy

Next, we continue with the Tsallis q entropy,

S(p1,p2, . . .,pW )=
1−ϕ(p1,p2, . . .,pW )

q − 1

=
1

q − 1
·

W∑
k=1

(
pk −p

q
k

)
, (14)

(e.g., Havrda and Charvát, 1967; Tsallis, 1988) where the
argument ϕ is defined by

ϕ(p1,p2, . . .,pW )=

W∑
k=1

p
q
k . (15)

Again, the maximization of the entropy under the constraints
of the canonical ensemble involves maximizing the func-
tional

G(p1,p2, . . .,pW )=
1

q − 1
·

W∑
k=1

(
pk −p

q
k

)
+ λ1

∑W

k=1
pk

(16)

+ λ2
∑W

k=1
pkεk.

Note that for simplicity we do not use the formulation of es-
cort distributions (Beck and Schlogl, 1993). The dyadic for-
malism of ordinary/escort distributions is of fundamental im-
portance in modern nonextensive statistical mechanics (Li-
vadiotis, 2017a; chap. 1). It has been shown that this dyadic
formalism of distributions can be avoided in order to simplify
the theory, but it leads to a dyadic formulation of entropy (Li-
vadiotis, 2017b).

Hence, (∂/∂pj )G(p1,p2, . . .,pW )= 0 gives

pj (εj )=
[
1+ (1− q−1) · (λ1− 1)

] q−1

1−q−1 (17a)

×

[
1+ (1− q−1) ·

λ2εj

1+ (1− q−1) · (λ1− 1)

] q−1

1−q−1

or

pj (εj )= expq
−1

q−1(λ1− 1) · expq
−1

q−1

[
λ2εj

1q−1(λ1− 1)

]
, (17b)

which reflects a generalization of Eq. (4). We used the
Q-deformed exponential function, and its inverse, the Q-
logarithm function (Silva et al., 1998; Yamano, 2002), de-
fined by

expQ(x)= [1+ (1−Q) · x]
−

1
Q−1

+ ,

lnQ(x)=
1− x1−Q

Q− 1
. (18a)

We also used the Q-deformed “unity function” (Livadiotis
and McComas, 2009), defined by

1Q(x)= [1+ (1−Q) · x]+. (18b)

The subscript “+” in [. . . ]+ denotes the cut-off condition,
where expQ(x) becomes zero if its base [. . . ] is non-positive.
Therefore, Eq. (17b) leads to

p
q−1
j = 1+ (1− q−1) · (λ1− 1)+ (1− q−1) · λ2εj , (19)

1−pq−1
j

q−1− 1
= lnq−1(p

q
j )=−q · lnq(p

−1
j )

= λ2εj + (λ1− 1). (20)

Dividing again the whole system into two subsystems, A
and B, using the additivity of energy, and setting λ1 = 1, the
independence relation (Eq. 11) is generalized to

lnq

[(
pA+B
ij

)−1
]
= lnq

[(
pA
i

)−1
]
+ lnq

[(
pB
j

)−1
]

⇒

(
pA+B
ij

)q−1
=

(
pA
i

)q−1
+

(
pB
j

)q−1
− 1, (21)

which is sometimes called the q independence relation-
ship (Umarov et al., 2008). Then, we apply the operator∑W
i=1
∑W
j=1p

A+B
ij ×,

∑W

i=1

∑W

j=1

(
pA+B
ij

)q
=

∑W

i=1

(
pA
i

)q
+

∑W

j=1

(
pB
j

)q
−1 ⇒ ϕA+B

= ϕA
+ϕB

− 1, (22)

and using the entropic formula (Eq. 14), we end up with the
additivity of entropy, as shown in Eq. (13).

Note that the additivity leads to the extensivity: the additiv-
ity for a function f is expressed by f (A+B)= f (A)+f (B),
or considering N different subsystems,

f

(
N⋃
n=1

An

)
=

∑N

n=1
f (An), (23a)

while the extensivity is expressed by

f

(
N⋃
n=1

A0

)
=N · f (A0). (23b)
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Therefore, the canonical probability distribution, the one
that maximizes the entropy under the constraints of a canon-
ical ensemble, makes the entropy additive (and therefore ex-
tensive) if the energy is additive. Several special conditions
can simplify this result, e.g., constant Lagrange constraints
with λ1 = 1 (i.e., independent of the probability distribution).
This is, however, the case for both the entropic formulation of
classical BG and Tsallis nonextensive statistical mechanics.

Next, we reverse the problem and seek to find the specific
entropic formula for which both the energy and entropy are
additive.

4 Additive energy and entropy leads to Tsallis entropic
formalism

The general entropic form is still function of the probabil-
ities: S = S({pk}Wk=1). Then, its derivative with respect to
any of the probability components, for example the ith, is
also a function of all of these components, i.e., ∂S/∂pi =
Fi({pk}

W
k=1), for any i: 1, . . .,W . However, the second con-

straint (i.e., fixed internal energy) of the canonical ensemble
connects the ith entropic derivative to a function hi of the
ith energy, εi , namely, ∂S/∂pi = hi(εi). On the other hand,
the canonical probability distribution derived from the en-
tropy maximization constitutes an expression of the ith prob-
ability component with some invertible function g of the ith
energy, pi = g(εi). Therefore, we conclude that ∂S/∂pi =
Fi(pi), where Fi = hi ◦g−1; in other words, the entropy can
be factorized as a summation of functions of each proba-
bility component, S =

∑W
k=1fk(pk), where we set fi(pi)=∫

Fi(pi)dpi . Finally, we consider that none of the states
(k = 1, . . .,W ) should have a special effect on the entropy;
i.e., each state “weights” the same, so the entropic func-
tional S = S({pk}Wk=1) should be symmetric to any permu-
tation of each components, e.g., S = S(. . .,pk, . . .,p`, . . .)=
S(. . .,p`, . . .,pk, . . .) (i.e., the entropy is invariant under any
relabeling of the states). This leads to fk = f ; hence, con-
sidering (1) entropy maximization and (2) no weighting, we
obtain

S =
∑W

k=1
f (pk). (24a)

For example, in the cases of Boltzmann (Eq. 2) and Tsallis
(Eq. 14) entropies, the function f is respectively given by

f (x)=−x ln(x) and f (x)= (x− xq)/(q − 1). (24b)

The maximization of entropy under the constraints
of a canonical ensemble, i.e., 1=

∑W
k=1pk and

U =
∑W
k=1pkεk , involves maximizing the functional

G({pk}
W
k=1)=

∑W
k=1f (pk)+ λ1

∑W
k=1pk + λ2

∑W
k=1pkεk .

Hence, setting ∂G({pk}Wk=1)/∂pi = 0, we obtain

F(pi)+ λ1+ λ2εi = 0, or pi(εi)= F
−1(−λ1− λ2εi),

with F(x)≡ f ′(x). (25)

We now consider two systems A and B, with respective
energy spectra {εA

i }
W
i=1 and {εB

j }
W
j=1, associated with the dis-

crete probability distributions {pA
i }
W
i=1 and {pB

j }
W
j=1. The to-

tal system A+B has an energy spectrum {εA+B
ij }

W
i,j=1, as-

sociated with the joint probability distribution {pA+B
ij }

W
i,j=1.

The probability distributions {pA
i }
W
i=1 and {pB

j }
W
j=1 are

marginal of the joint distribution, i.e.,
∑W
j=1p

A+B
ij = pA

i and∑W
i=1p

A+B
ij = pB

j . As we will find further below, the joint
probability can be expressed as a function of the marginal
probabilities, pA+B

ij =H(pA
i ,p

B
j ). On the other hand, the re-

lation between the joint energies εA+B
ij is rather trivial to be

derived: particles in A with energy εA
i and particles in B

with energy εB
j ensemble the particles in A+B with energy

εA+B
ij = εA

i +ε
B
j . Trivially, the same additivity holds for their

mean values – the internal energies:

UA+B
=

∑
i,j

pA+B
ij εA+B

ij =

∑
i,j

pA+B
ij εA

i +

∑
i,j

pA+B
ij εB

j

=

∑
i

pA
i ε

A
i +

∑
j

pB
j ε

B
j = U

A
+UB. (26)

Now, the probability distributions are related to their ener-
gies, according to Eq. (7). According to Eq. (25), we have

F
(
pA
i

)
+ λ1+ λ2ε

A
i = 0, F

(
pB
j

)
+ λ1+ λ2ε

B
j = 0,

F
(
pA+B
ij

)
+ λ1+ λ2ε

A+B
ij = 0, (27)

and due to the additivity of energies, we obtain

F
(
pA+B
ij

)
− λ1 = F

(
pA
i

)
+F

(
pB
j

)
. (28)

Again, the Lagrange constants, λ1 and λ2, are considered to
be independent of the probability distribution. Setting F̃ ≡
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1
−λ1

F , Eq. (28) becomes[
F̃
(
pA+B
ij

)
− 1

]
=

[
F̃
(
pA
i

)
− 1

]
+

[
F̃
(
pB
j

)
− 1

]
, or,

(29)

pA+B
ij =H(pA

i ,p
B
j ),

with H(x,y)≡ F̃−1 [F̃ (x)+ F̃ (y)− 1
]
. (30)

Then, we apply
∑W
i=1
∑W
j=1p

A+B
ij × to both sides of Eq. (29):

W∑
i,j=1

[
F̃
(
pA+B
ij

)
− 1

]
pA+B
ij =

W∑
i=1

[
F̃
(
pA
i

)
− 1

] W∑
j=1

pA+B
ij

+

W∑
j=1

[
F̃
(
pB
j

)
− 1

] W∑
i=1

pA+B
ij , or

W∑
i,j

[
F̃
(
pA+B
ij

)
− 1

]
pA+B
ij =

W∑
i

[
F̃
(
pA
i

)
− 1

]
pA
i

+

W∑
j

[
F̃
(
pB
j

)
− 1

]
pB
j . (31)

(Note that the number of states allowed may be different for
the two subsystems,WA 6=WB , but here it does not make any
difference to consider WA =WB =W .)

We recall that F̃ (x)≡ 1
−λ1

f ′(x); thus, we find

W∑
i,j

[
1
−λ1

f ′
(
pA+B
ij

)
− 1

]
pA+B
ij = (32)

W∑
i

[
1
−λ1

f ′
(
pA
i

)
− 1

]
pA
i +

W∑
j

[
1
−λ1

f ′
(
pB
j

)
− 1

]
pB
j .

We compare this relationship with the additivity of entropy:

SA+B
=

W∑
i,j

f
(
pA+B
ij

)
=

W∑
i

f
(
pA
i

)
+

W∑
j

f
(
pB
j

)
= SA

+ SB. (33)

The two functions f (x) and [ 1
−λ1

f ′(x)−1] ·x have the same
additivity property. Therefore, one function f that can ensure
the additivity of entropy is the one that obeys conforms to the
proportionality, f (x)∝ [ 1

−λ1
f ′(x)−1] ·x, or the differential

equation

f (x)= c ·

[
1
−λ1

f ′(x)− 1
]
· x,

or f ′(x)+
λ1

c

1
x
f (x)=−λ1, (34)

with solution

f (x)= λ1 ·
x− x

− λ1
c

−λ1
c
− 1
+ f (1) · x

−λ1
c . (35)

(Note that the selection of proportionality between the two
functions f (x) and [ 1

−λ1
f ′(x)− 1] · x makes the derivation

of Eq. (34) a sufficient but not necessary condition. Other
functional forms may also exist, for example, a linear com-
bination of the two functions mentioned.)

A fully organized system has zero entropy, so that
S(pi = 1 ,pj = 0∀j : 1, . . ., W, withj 6= i) = 0. Then,
from Eq. (24a) we find S = 0= f (1)+ (W − 1)f (0).
Equation (35) gives f (0)= 0; hence, we find f (1)= 0, too.
Then, we set q ≡ −λ1

c
, where we find

f (x)= λ1 ·
x− xq

q − 1
, (36)

or, setting also λ1 = 1 (that is, setting the entropic unit kB
equal to 1), we end up with

f (x)=
x− xq

q − 1
. (37)

Therefore, the entropic function S =
∑W
k=1f (pk) becomes

S =
1

q − 1
·

W∑
k=1

(
pk −p

q
k

)
, (38)

that is, the Tsallis entropic formulation that builds the nonex-
tensive statistical mechanics.

We note that Eq. (33) is invariant under linear transforma-
tions:

f (x)→ f (x)+ a(x+ b) with a =
λ1− 1

1+ (q − 1)W−1
W−2

,

b =
1

W(W − 2)
, (39)

which leads again to Eq. (38).

5 Conclusions

The paper resolved a basic problem about the origin of
the distributions and statistical mechanics applied in space
plasmas. Kappa distributions, or combinations/superposition
thereof, can describe the velocities and energies of the
plasma populations in space plasmas. While these empirical
distributions have been used since the mid-1960s for mod-
eling space plasma datasets, their statistical origin remained
unknown. It was just about a decade ago that the connection
of these distributions with the statistical framework of nonex-
tensive statistical mechanics was completed and understood
(Livadiotis, 2017a; chap. 1). Indeed, the kappa distribution is
the outcome of the maximization of the q entropy of Tsal-
lis under the constraints of a canonical ensemble (identify-
ing the q exponential distributions, first used in a statistical
framework context in Tsallis, 1988, as kappa distributions).
Once this concept was understood by the science community,
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the next question was about the physical origin and reason-
ing of this entropic formula. This paper showed that the q
entropy, which is the entropic formula that when maximized
leads to the kappa distribution, can be derived under simple
first principles and conditions, namely, by considering that
energy and entropy are both additive physical quantities.
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