Articles | Volume 23, issue 2
https://doi.org/10.5194/npg-23-91-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent
Related authors
Related subject area
Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Solid earth, continental surface, biogeochemistry
Size distribution law of earthquake-triggered landslides in different seismic intensity zones
Application of fractal models to delineate mineralized zones in the Pulang porphyry copper deposit, Yunnan, southwestern China
The adaptive particle swarm optimization technique for solving microseismic source location parameters
Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis
Scale and space dependencies of soil nitrogen variability
Nonlin. Processes Geophys., 28, 167–179,
2021Nonlin. Processes Geophys., 26, 267–282,
2019Nonlin. Processes Geophys., 26, 163–173,
2019Nonlin. Processes Geophys., 24, 141–155,
2017Nonlin. Processes Geophys., 24, 77–87,
2017Cited articles
Gray, D. M.: Interrelationships of watershed characteristics, J. Geophys. Res., 66 1215–1223, 1961.
Hack, J. T.: Studies of longitudinal profiles in Virginia and Maryland. USGS Professional Papers 294-B, Washington DC, 46–97, 1957.
Hunt, A. G., Ewing, R. P., and Ghanbarian, B.: Percolation Theory for Flow in Porous Media, 3rd Edn., Springer, Berlin, 2014.
Lopez, E., Buldyrev, S. V., Braunstein, L. A., Havlin, S., and Stanley, H. E.: Possible connection between the optimal path and flow in percolation clusters, Phys. Rev. E, 72, 056131, https://doi.org/10.1103/PhysRevE.72.056131, 2005.
Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., and Rodriguez-Iturbe, I.: Scaling laws for river networks, Phys. Rev. E, 53, 1510–1515, 1996.