
Nonlin. Processes Geophys., 23, 91–93, 2016

www.nonlin-processes-geophys.net/23/91/2016/

doi:10.5194/npg-23-91-2016

© Author(s) 2016. CC Attribution 3.0 License.

Brief communication: Possible explanation of the values of Hack’s

drainage basin, river length scaling exponent

Allen G. Hunt

Department of Physics and Department of Earth & Environmental Sciences, Wright State University,

3640 Colonel Glenn Highway, Dayton, OH 45435, USA

Correspondence to: Allen G. Hunt (allen.hunt@wright.edu)

Received: 14 May 2015 – Published in Nonlin. Processes Geophys. Discuss.: 18 August 2015

Revised: 22 March 2016 – Accepted: 23 March 2016 – Published: 6 April 2016

Abstract. Percolation theory can be used to find water flow

paths of least resistance. Application of percolation theory to

drainage networks allows identification of the range of expo-

nent values that describe the tortuosity of rivers in real river

networks, which is then used to generate the observed scaling

between drainage basin area and channel length, a relation-

ship known as Hack’s law. Such a theoretical basis for Hack’s

law may allow interpretation of the range of exponent values

based on an assessment of the heterogeneity of the substrate.

1 Introduction

River networks display complex organization as documented

in numerous studies. This work addresses only one of them,

in particular, the relationship between drainage basin area

and river length, which is non-trivial. In Euclidean geome-

try the basin area, A, would be proportional to the square of

the river length, l; i.e., l should be proportional to A1/2. In

actuality, as determined by Hack (1957), this relationship is

l = CAβ ,

with the value of β approximately 0.6. Later investigations

did not always return the identical value of β. Nevertheless,

Maritan et al. (1996) consider the value of β to be well con-

strained and refer to a study of Gray (1961) as having estab-

lished that “the accepted values for the exponent [β] are in

the range 0.57 to 0.6”.

Hack (1957) (p. 65) asserts that the relationship was a

consequence of the lengthening of drainage basins with in-

creasing size. But Montgomery and Dietrich (1992) compare

straight-line basin length, L, to A over 7 orders of magni-

tude of length scale and find precisely L= A0.5. That result

allows stream length to be expressed in terms of the straight-

line basin dimension, l = Aβ = Lγ = L2β , so that γ = 2β.

The exponent γ > 1 then defines the tortuosity (sometimes

known as sinuosity) of the stream path through the drainage

basin.

Hack’s law explanations have been sought in fractal (Tar-

boton et al., 1988; Maritan et al., 1996), constructal (Reis,

2006), and “feasible optimality” (Rigon et al., 1998) theories.

Fractal theories produce the required self-similar drainage

basins (Peckham, 1995) as well as increasing stream sinu-

osity downstream. I suggest that Hack’s law can be under-

stood using percolation theory (Stauffer and Aharony, 1994)

because (1) the fractal structure of the percolation cluster

generates values for γ that constrain the data for β reason-

ably, and (2) it exploits the concept that water flows along

paths of minimal resistance, as also in the subsurface (Hunt

et al., 2014).

2 Theory

There are two distinct applications of percolation theory to

flow or conduction problems, and these two applications are

those that provide the bounds to Hack’s exponent values. The

more familiar application is to a binary system, where, e.g.,

bonds either connect neighboring sites (which in the simplest

case are located on a lattice, or grid), or they do not. If enough

such neighboring sites are connected, a continuous path of

interconnected bonds spans the system. This is denoted the

percolation threshold. The shortest distance across the sys-

tem within this connected cluster is called the chemical path

length (Porto et al., 1997). Since all bonds have equal resis-
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tance, the shortest flow path also has the lowest resistance

and optimal dissipation.

The second possibility is a system in which bonds of vary-

ing resistance connect each pair of neighboring sites. When

the system is strongly heterogeneous, i.e., when the distribu-

tion of the natural logarithm of the resistances has variance,

σ 2
� 1, the proper application of percolation theory is to find

the path of least cumulative resistance. Quantification of this

process equates an integral over the local conductance distri-

bution, from a “critical” value, to the largest value, with the

percolation threshold (Pollak, 1972). This particular method

became known as “critical path analysis”, or CPA. The sub-

network so defined is precisely at the percolation threshold

(Stauffer and Aharony, 1994). However, the most interesting

path across this system is not the shortest, but the optimal

path, which provides the least energetic cost in a strongly het-

erogeneous network (Lopez et al., 2005), i.e., with variance

tending to infinity. Since the optimization is not for length,

but for energy costs, the path is longer than in a homogeneous

system, meaning that its tortuosity exponent is larger. Never-

theless, the chemical path length in a homogeneous system

is the analog of the optimal path length in a heterogeneous

system, because the shortest path in a system with identical

links also represents the path of minimum energy dissipation.

The restriction of river networks to the surface of the earth,

and the measurement of stream lengths on 2-D maps, makes

the topology of stream connections and the application of

percolation theory two-dimensional. In two dimensions, the

chemical path length scales with the system size (Sheppard et

al., 1999), L as L1.13, but the optimal path length scales with

system size as L1.21, and does not depend on whether a per-

colation process is classed as random, or invasion (Sheppard

et al., 1999). However, not all possible underlying correla-

tions in the local conductance distribution have been inves-

tigated. It is known that certain fractal correlation structures

in the local conductances can reduce the exponent associ-

ated with the conductivity, or reduce the fractal dimensional-

ity of the percolation backbone (Sahimi and Mukhopadhyay,

1996), but there was no corresponding effect noted on the tor-

tuosity or optimal paths exponent. Physical arguments sug-

gest that positive correlations will tend to shorten paths, re-

ducing tortuosity, in accord with the general result that mak-

ing all conductance magnitudes equal reduces the tortuos-

ity of connected paths. Consequently, one might ask whether

negative correlations could lengthen paths. In any case, call-

ing the scaling exponent, γ , as above, we therefore find that

known results from percolation theory constrain its values to

be 1.13 < γ < 1.21. It should be emphasized here that the pre-

cision of the numerical calculations of these exponent values

by Sheppard et al. (1999) exceeded all other attempts by at

least an order of magnitude. Thus it appears that two possible

endpoints for the application of percolation theory to the for-

mation of river networks, generated from homogeneous and

heterogeneous systems, respectively, constrain observed val-

ues of Hack’s exponents reasonably well. How could they be

realized in nature, or in landscape models?

One can start from an initially homogeneous landscape,

and allow stream incision through random headward erosion,

analogous to the processes treated in early landscape evolu-

tion models (Willgoose et al., 1991), which generate hierar-

chical structures from random chance associated with rain-

fall magnitude variability. A connected path with the low-

est dissipation (shortest length) will soon acquire the highest

flow, through channel erosion feedbacks. Thus, once a river

makes a random choice, the enhanced erosion power from

the stream reinforces the initial random choice.

The optimal path exponent describes the tortuosity of a

channel, when the channel is determined by a global opti-

mization of the flow path in a heterogeneous substrate, and

could not be a simple product of headward erosion, which

might produce only a local optimization. In such a case ge-

ological constraints from varying erodibility can dominate

as channels extend either upward, by headward erosion, or

downward (e.g., by overtopping of sills).

Using the above result that γ = 2β, we find for

Hack’s (1957) original result, l = L1.2. The range

quoted by Maritan et al. (1996), 0.57 <β < 0.6, gener-

ates 1.14 < γ < 1.20. The predicted range of tortuosity

exponent values, γ , 1.13 < γ < 1.21, generated by percola-

tion theory appears in accord with the observed range of

values, and to be slightly larger, consistent with interpreting

this range as bounds on observed values.

Note that, while, e.g., Willemin (2000) found a wider

range of β (0.5 to 0.7) than did Gray (1961), these values

were for limited statistics (as small as 11 data points). Al-

though this range is wide, compared with our predictions,

when all statistics were put together (Willemin’s Fig. 11) the

resulting value of β was 0.58. Furthermore, individual values

did increase monotonically with increasing geologic hetero-

geneity. Northwestern Iowa in the middle of the North Amer-

ican craton produced 0.5, New York, 0.64, and coastal Ore-

gon, in a region of active tectonics, 0.7. Finally, the range of

values for β quoted by Gray (1961) arose from his consid-

eration of studies over different regions with distinct terrain;

uncertainty in a given region was reported in the variation of

the numerical prefactor, rather than the exponent.

3 Conclusions

Percolation predictions generate a range of exponents con-

sistent with those reported in Hack’s law, including the ten-

dency for the largest exponent values to occur in geologically

heterogeneous environments.

The statistical nature of percolation theory is in accord

with the tendency of the spread in Hack’s exponent values

to diminish with increasing sample size.
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The source of the tortuosity in the “optimal paths” of low-

est energy dissipation is in general accord with the “feasible

optimality” (Rigon et al., 1998) proposed to explain Hack’s

law.
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