Articles | Volume 22, issue 5
https://doi.org/10.5194/npg-22-571-2015
https://doi.org/10.5194/npg-22-571-2015
Brief communication
 | 
05 Oct 2015
Brief communication |  | 05 Oct 2015

A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows

D. Garaboa-Paz and V. Pérez-Muñuzuri

Related authors

Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021,https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events
Vicente Pérez-Muñuzuri, Jorge Eiras-Barca, and Daniel Garaboa-Paz
Earth Syst. Dynam., 9, 785–795, https://doi.org/10.5194/esd-9-785-2018,https://doi.org/10.5194/esd-9-785-2018, 2018
Short summary
Climatology of Lyapunov exponents: the link between atmospheric rivers and large-scale mixing variability
Daniel Garaboa-Paz, Jorge Eiras-Barca, and Vicente Pérez-Muñuzuri
Earth Syst. Dynam., 8, 865–873, https://doi.org/10.5194/esd-8-865-2017,https://doi.org/10.5194/esd-8-865-2017, 2017
Short summary
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
Daniel Garaboa-Paz, Nieves Lorenzo, and Vicente Pérez-Muñuzuri
Nonlin. Processes Geophys., 24, 227–235, https://doi.org/10.5194/npg-24-227-2017,https://doi.org/10.5194/npg-24-227-2017, 2017
Short summary
Path-integrated Lagrangian measures from the velocity gradient tensor
V. Pérez-Muñuzuri and F. Huhn
Nonlin. Processes Geophys., 20, 987–991, https://doi.org/10.5194/npg-20-987-2013,https://doi.org/10.5194/npg-20-987-2013, 2013

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary

Cited articles

Babiano, A., Cartwright, H. H. E., Piro, O., and Provenzale, A.: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems, Phys. Rev. Lett., 84, 5764–5767, 2000.
Bec, J.: Fractal clustering of inertial particles in random flows, Phys. Fluids, 15, L81–L84, 2003.
Beron-Vera, F. J., Olascoaga, M. J., Haller, G., Farazmand, M., Triñanes, J., and Wang, Y.: Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean, Chaos, 25, 087412, https://doi.org/10.1063/1.4928693, 2015.
Boffetta, G., de Lillo, F., and Gamba, A.: Large scale inhomogeneity of inertial particles in turbulent flows, Phys. Fluids, 16, L20–L24, 2004.
Bower, A. M.: A simple kinematic mechanism for mixing fluid parcels across a meandering jet, J. Phys. Oceanogr., 21, 173–180, 1991.
Download
Short summary
The present study aims to improve the calculus of finite-time Lyapunov exponents (FTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. Results are presented for two different flows and compared with the classical method by Shadden (2005).