Articles | Volume 22, issue 1
https://doi.org/10.5194/npg-22-33-2015
https://doi.org/10.5194/npg-22-33-2015
Research article
 | 
13 Jan 2015
Research article |  | 13 Jan 2015

On the data-driven inference of modulatory networks in climate science: an application to West African rainfall

D. L. González II, M. P. Angus, I. K. Tetteh, G. A. Bello, K. Padmanabhan, S. V. Pendse, S. Srinivas, J. Yu, F. Semazzi, V. Kumar, and N. F. Samatova

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Doel Gonzalez on behalf of the Authors (10 Jul 2014)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (09 Aug 2014) by Vimal Mishra
ED: Publish as is (21 Nov 2014) by Vimal Mishra
AR by Doel Gonzalez on behalf of the Authors (01 Dec 2014)
Download
Short summary
We applied coupled heterogeneous association rule mining (CHARM), Lasso multivariate regression, and dynamic Bayesian networks to find relationships within a complex system, and explored means with which to obtain a consensus result from the application of such varied methodologies. Using this fusion of approaches, we identified relationships among climate factors that fall into two categories: well-known associations from prior knowledge, and putative links that invite further research.