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Abstract. Decades of hypothesis-driven and/or first-
principles research have been applied towards the discovery
and explanation of the mechanisms that drive climate phe-
nomena, such as western African Sahel summer rainfall vari-
ability. Although connections between various climate fac-5

tors have been theorized, not all of the key relationships are
fully understood. We propose a data-driven approach to iden-
tify candidate players in this climate system, which can help
explain underlying mechanisms and/or even suggest new re-
lationships, to facilitate building a more comprehensive and10

predictive model of the modulatory relationships influencing
a climate phenomenon of interest. We applied coupled het-
erogeneous association rule mining (CHARM), Lasso mul-
tivariate regression, and Dynamic Bayesian networks to find
relationships within a complex system, and explored means15

with which to obtain a consensus result from the applica-
tion of such varied methodologies. Using this fusion of ap-
proaches, we identified relationships among climate factors
that modulate Sahel rainfall. These relationships fall into
two categories: well-known associations from prior climate20

knowledge, such as the relationship with the El Niño South-
ern Oscillation (ENSO) and putative links, such as North At-
lantic Oscillation, that invite further research.

1 Introduction25

The climate system is inherently complex, due to the exis-
tence of non-linear interactions, or couplings, between its
subsystems (e.g., the ocean and the atmosphere), global scale
temperature anomalies (e.g., El Niño-Southern Oscillation),
and other climate behaviors. Such a system exhibits hierar-30

chical modularity of its organization and function (Havlin
et al., 2012): each constituent subsystem performs a simi-

lar function and does not act in isolation; instead, they inter-
act or cross-talk. The challenge is to discover the key sub-
systems and their cross-talk mechanisms; that is, the pos-35

itive and negative feedbacks that collectively modulate the
dynamic behavior of the system through a sophisticated net-
work of modulatory pathways that ultimately define the sys-
tem’s functional response.

For example, the rainfall anomaly in the Sahel region of40

western Africa, which is the focus of this study, represents
a ”functional response” for the climate system, which is in
actuality the predictant of a model (such as Lasso, DBN,
etc.). Rainfall in the Sahel is dependent on global Sea Sur-
face Temperature (SST) patterns, as well as on local climate45

variability. There is a multitude of complex associations be-
tween various subsystems that drive the Sahel’s climate re-
sponse mechanisms. Some of these associations have been
discovered throughout more than two decades of hypothesis-
driven and/or first-principles based research. These associ-50

ations include a diverse range of climate mechanisms. For
example, warmer temperatures in the Mediterranean Sea re-
gion lead to increased evaporation, and southward moisture
advection in the lower troposphere toward the Sahel (Row-
ell, 2003). On a more global scale, the Atlantic Multidecadal55

Oscillation (AMO) displaces the Intertropical Convergence
zone (ITCZ) further northward, bringing more moisture to
the Sahel region (Zhang and Delworth, 2006). The North At-
lantic Oscillation (NAO) has been linked to the moisture bud-
get in Northern Africa (Hurrell, 1995), through a direct influ-60

ence on the Sea Level Pressure (SLP), although this mecha-
nism remains underexplored. In the Pacific, a warm ENSO
event is associated with enhanced trade winds over the tropi-
cal Atlantic and weaker moisture advection over West Africa,
consistent with a weaker monsoon system strength (Janicot65

et al., 2001). Figure 1 illustrates an overview of the climate
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modulatory network, which is a collection of modulatory
pathways, with some mechanisms driving rainfall in the Sa-
hel known to be directly/indirectly associated, and some not
fully understood. Comprehending these mechanisms is par-70

ticularly important due to the influence of rainfall variability
in the region. Severe drought occurred throughout the 1970’s
and 1980’s, leading to severe disruption of agriculture and
major food shortages (Mortimore and Adams, 2001). Dry
conditions (low rainfall anomaly) also lead to the spread of75

meningitis, as in wet conditions, higher humidity during both
the spring and summer seasons strongly reduce disease risk
by decreasing the transmission capacity of the bacteria (Sul-
tan et al., 2005). These issues make the Sahel particularly
vulnerable to fluctuations in rainfall, and provide motivation80

to improve domain scientist’s knowledge of the contributing
factors (Tetteh, 2012).

For mechanistic understanding of functional responses
such as African Sahel rainfall, we posit that a data-driven
approach may facilitate the discovery of key players that85

might cross-talk by identifying candidate modulatory path-
ways and/or suggesting new factors and relationships with
the proper characterization of their inductive or suppressive
roles. The goal of our approach is to elucidate the putative
modulatory pathways that suggest cross-talking mechanisms90

controlling a system’s functional response. More specifically,
given the key climate drivers and their modulatory direc-
tions on the response, we must infer (a) the putative path-
ways of modulatory events (e.g., Pacific ENSO→ AMO→
Sahel Rainfall in Fig. 1) and (b) the modulatory signs (e.g.,95

induction vs. suppression, such as a positive anomaly sign
of EATL, EATLHIGH being related to the negative anomaly
sign of Sahel rainfall, RainfallLOW) that collectively define
the network of modulatory pathways for the response. Fur-
thermore, given that there is a variety of methodologies that100

can be used to find such modulatory relationships, we must
provide a consensus result that accounts for all evidence of
a given relationship. To the best of our knowledge, this is a
novel proposition in the field of knowledge discovery in the
physical science domain, in general, and climate extremes105

(e.g., droughts), in particular. Moreover, this data-driven ap-
proach could contribute, in the long run, to the identification
and characterization of more comprehensive and predictive
models of the physical phenomenon under study.

2 Methods110

In our previous work, we proposed an approach for the afore-
mentioned data-driven, semi-automatic inference of phe-
nomenological physical models based on Lasso multivariate
regression (Pendse et al., 2012). This approach was applied
to quantify the influence of key factors on the Sahel rainfall115

anomaly. The results obtained enabled the formulation of the
North Atlantic Oscillation (NAO)-driven hypothesis, among
others, which theorizes that the NAO modulates the drivers

Fig. 1. Complex relationships between climate indices and Sahelian
rainfall, with some direct and indirect relationships well defined in
literature (light arrows) and others not fully understood (dark ar-
rows)

of West African climate, the Atlantic Dipole and the EATL,
via the low-level westerly (LLW) jet.120

We extended this work by developing coupled heteroge-
neous association rule mining (CHARM), which allowed us
to mine higher-order couplings of climate relationships and
to capture the anomaly phases with which each climate fac-
tor is related to each other (e.g., a negative anomaly of LLW125

may be related to a positive anomaly of EATL, and the pres-
ence of both factors may be associated with a negative Sahel
rainfall anomaly) (Gonzalez et al., 2013) (Sect. 2.1). Such re-
lationships are not typically captured from modulatory infer-
ence frameworks, let alone traditional association rule min-130

ing (ARM) methodologies.
Here we propose to extend CHARM by incorporat-

ing other existing methodologies, namely Lasso multivari-
ate regression (Tibshirani, 1994) (Sect. 2.2) and Dynamic
Bayesian Networks (Murphy, 2002) (Sect. 2.3), as comple-135

mentary approaches to increase the confidence of the inferred
modulatory relationships. Moreover, in order to obtain a con-
sensus as to which of the relationships identified have the
most evidence of being present, we treat the results of each
methodology as individual pieces of evidence in an informa-140

tion fusion approach, and combine them into a unified, co-
herent result. This unified result can provide us a means with
which to increase the confidence of the relationships identi-
fied throughout the different methodologies. This should al-
low us to contrast the methodologies by studying how each of145

their results differ, and to correlate these results with known
relationships found in literature. Furthermore, the applica-
tion of this unified result to the climate network may allow
the identification of previously-undiscovered relationships,
which can then be analyzed from a traditional climate per-150

spective. In the Section 3 (specifically Table 3), we present
the application of such a method to the climate indices af-
fecting Sahel rainfall.
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2.1 CHARM: Coupled Heterogeneous Association Rule
Mining155

CHARM is an extension of ARM that enables the discov-
ery of climatologically-relevant modulatory pathways from
spatio-temporal climate data. The traditional ARM method-
ology CHARM is based on is presented in Sect. 2.1.1, and
the limitations of ARM that CHARM aims to address are de-160

scribed in Sect. 2.1.2.

2.1.1 Traditional Association Rule Mining (ARM)

Traditional ARM was pioneered by Agrawal et al. (1993) as
a methodology for capturing the frequency with which two
items are present within transactions in market basket data.165

For instance, Fig. 2 presents a set of transactions that in-
dicate whether or not an item was purchased. ARM takes
this information and organizes each transaction as a com-
binatorial set of items. For example, Customer2 has one 3-
itemset (i.e., itemset with 3 items) {Bread, Diapers, Beer} as170

its largest possible itemset, and three 2-itemsets: {Bread, Di-
apers}, {Bread, Beer}, {Diapers, Beer}. By studying the fre-
quency with which each itemset occurs across transactions,
one can potentially conclude that said items are typically pur-
chased together, and are possibly related. In Fig. 2, we see175

that {Bread, Milk} occurs in 60 % of transactions, and thus
we can say that if we were to see bread in a transaction, 60 %
of the time we should see milk in that transaction as well.
This measure is known as the support of an association rule.

In our work, we capture a climate relationship as being180

such itemsets of climate variables that co-occur at least twice
in our data, where in our case climate variables are climate
indices, as discussed in Section 2.1.2. Literature support for
such relationships is available in Section 3, and captured in
Table 3.185

The aforementioned relationship can be equally repre-
sented as {Bread→ Milk} or {Milk→ Bread}, utilizing an
arrow to capture that the presence of the antecedent (e.g.,
the items on the left side) implies the consequent (e.g., the
items on the right side) will be present with the given sup-190

port. However, if we use a metric such as confidence, which
captures the conditional probability of the consequent being
present given the presence of the antecedent, the direction of
the rule carries more weight. For example, {Bread→Milk}
has a confidence of 0.75 (of the four times bread is present,195

milk is only present thrice) while {Milk→ Bread} has a con-
fidence 1 (bread is present every time milk is present) (Tan
et al., 2006). As such, the metric used to measure the interest-
ingness of mined rules affects their overall interpretation and
should be selected carefully (Sect. 2.1.4) (Tan et al., 2001).200

ARM is an increasing area of interest for domain sciences,
because of the growing need to mine data to identify the co-
occurrence of important events (Agrawal and Srikant, 1994;
Tan et al., 2001). ARM, unlike other methodologies for in-
ference of phenomenological models, takes into account the205

Fig. 2. Simplistic traditional representation of market basket data in
the form of transactions. The rule Bread → Milk has a support of
0.6, meaning it appears in 60% of transactions.

latent but vital signals embedded in the intermediary path-
ways associated with the system’s functional response. How-
ever, the application of ARM to spatio-temporal climate data
puts forth a series of challenges. In Sect. 2.1.2, we outline
these challenges and describe CHARM as a means to address210

them.

2.1.2 Coupling of climate indices

Due to the complexity of the climate system, building com-
prehensive models over climate data is not trivial, in part be-
cause of the interactions between its subsystems, the dimen-215

sionality and structure of its underlying data, and the quality
of such data.

The key drivers of a climate system are spatially dis-
tributed and active at different temporal phases in the modu-
latory network of the system’s functional response. State-of-220

the-art mining methodologies are not well-equipped to han-
dle such diversity of spatio-temporal alignment between the
system’s features. For example, due to the transactional na-
ture of the ARM methods, each spatial grid point (specified
by latitude, longitude, and/or altitude) at a given point in time225

(e.g., month and year) defines a transaction ID, or a row in the
transaction matrix. This requires that all features be aligned
with respect to their transaction IDs, complicating the use of
multi-resolution, multi-variate, spatio-temporal climate data
by these methods. For this reason, we leverage climate in-230

dices, known to be a valid abstraction of the underlying sub-
system’s zonal climate behavior (Hallett et al., 2004), thus
significantly reducing the number of features needed to cap-
ture spatial data. However, these climate indices that capture
data for different subsystems are located in different parts of235

the globe (see Fig. 3).
Some climate variables from observations or simulations

(e.g., SST) are defined only over the ocean; yet others (e.g.,
rainfall) are defined over land. Hence, considering both fea-
tures as columns in a transactional matrix is impossible,240

given that they have no common grid points. Even if they
share some spatial region, they are often still not perfectly
aligned due to variation of their grid resolutions. While math-
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Fig. 3. Climate indices can be distant, or many times partially co-
located, complicating spatial alignment.

ematical methods (e.g., interpolation or extrapolation) ex-
ist to facilitate data alignment, they introduce uncertainty245

and instability, affecting the interpretability of the results
(Gonçalves, 2002). Subsequently, when a new feature is in-
tegrated into the study, realignment and the aforementioned
mathematical operations must be performed again.

An ARM-based approach for the discovery of relation-250

ships among climate variables was proposed by Tan et al.
(2001). This approach studies only spatially-aligned datasets,
and affixes climate indices alongside them. However, due to
its inherently grid-based nature, this approach assigns each
climate index’s locally observed anomalies to all grid points.255

That is, it assumes that the anomaly equally affects the entire
globe. While such an assumption may hold for some climate
drivers, it can increase the number of false positives due to
its inherent amplification bias. For example, in the represen-
tative case shown in Fig. 4, the high anomaly of the SOP260

index (SOI-HI) and the low anomaly of the NP index (NP-
LO) would occur in so many transactions (see Sect. 2.1.1)
that it would be present in every itemset for time t1, which
complicates understanding the information gained from any
resulting rules that includes them.265

Climate scientists often study climate factors in a cou-
pled manner and relate certain variables to others. Traditional
lagged climate techniques employed for coupled pattern
analysis include singular value decomposition, grid point
correlations, among others (Polo et al., 2008). For example,270

Principal Component Analysis (PCA) has been used to de-
termine the relationship between Indian Ocean Dipole and
East African rainfall (Schreck and Semazzi, 2004; Manatsa
et al., 2012). Hence, we adopt a similar approach by coupling
climate indices. We take a quotient of these relationships be-275

fore identifying any anomaly, to capture the anomaly in the
relationships between these variables.

For each climate index λ to be used as a coupling listener,
we iterate through all other climate indices δ as coupling in-
citers, and calculate their ratio, δ/λ, as a data coupling that280

intends to capture the behaviors of the logical sentence “how
abundant is δ given the presence of λ?” An issue in calcu-
lating these ratios is the potential emergence of large values

Fig. 4. Spatially-defined variables’ anomaly presence or absence is
affixed to climate index anomalies expanded to represent a global
effect.

due to the denominator possibly being orders of magnitude
smaller than the numerator. To handle this, we normalize the285

resulting data couplings such that they range between−1 and
1, allowing us to avoid wide-ranging quotients that could af-
fect the abstraction of anomalous events (Sect. 2.1.3).

We note that each tuple (row in the database) now repre-
sents a specific coupling inciter λ and time, while each col-290

umn represents a particular coupling listener δ, and each cell
contains the relevant data coupling value. For ARM, this data
must be binned, after which the resultant dataset cells indi-
cate the presence or absence of anomalies for each previously
calculated coupling, described further in Sect. 2.1.3. We ad-295

dress the increase in dimensions this leads to in Sect. 2.2.1,
by using only the most prominent temporal phases in order
to reduce the search space.

2.1.3 Identifying anomalous events

As suggested by NOAA (2014) and based on our interac-300

tions with climate scientists, we identify anomalies as any set
of values below the 33.33rd percentile or above the 66.67th

percentile for any given variable. Given that the data was
normalized before calculating ratios, we identify the anoma-
lies using the aforementioned norm, based on the phase-wise305

groupings. We take each tuple corresponding to each unique
combination of δ and λ, and identify high anomalies as being
those ratios in the upper 66.67th percentile, and low anoma-
lies as being ratios in the lower 33.33rd percentile.

Since we are trying to identify the presence or absence310

of anomalous events, we divide each column into two sepa-
rate high and low cases, and assign a binary 1 when either
anomaly occurs, and a 0 otherwise. This results in a very
sparse matrix, as no particular year can fit in both high and
low categories, and it is likely the majority of years have most315

variables falling into a non-anomalous category.
Figure 5 represents a particular (i, j)th iteration. In this

example, for the coupling of λi = EATL8 and δj = NAO3,
we identify high and low anomalies and assign transaction
IDs that indicate that the cells pertain to the coupling of that320

year’s data for the listener (shown in the column header)
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Fig. 5. Data coupling for λi = EATL8 and δj =NAO3.

against the stated inciter. This transaction ID shows that each
row in the matrix consists of the anomaly of the ratios calcu-
lated over each possible coupling δx/λi, where x indicates
that all values in this row were divided by the same λi.325

2.1.4 CHARM pathway significance assessment

As mentioned before, rule interestingness in ARM is esti-
mated using metrics that quantify the importance of each
rule. Selecting which metric to use depends on the infor-
mation to be obtained (Tan et al., 2001). Support and con-330

fidence are commonly used to measure rule quality, and al-
though there are other possible metrics to measure interest-
ingness, none is regarded a “catch-all” for high quality rules
(Tan et al., 2001). Such metrics also require predetermined
thresholds to cut off rules deemed “uninteresting”, which re-335

duces the accuracy in retention of significant rules. Hence,
we first prune based on bare-minimum thresholds for support
and confidence (the rule appearing in a single transaction),
and if any given rule needs to be further analyzed (based on
domain knowledge or otherwise), we perform a Monte Carlo340

simulation to test against the null hypothesis of observing the
rule at random. Thus, we define a rule to be significant and
interesting if it meets the following criteria: p value≤ 0.01,
support≥ 6%, and confidence≥ 75%.

This criteria constrains the search space, and trims the re-345

sult space, pruning unimportant rules. Once a set of possibly
interesting rules is identified, the computationally more de-
manding, but embarrasingly parallel, statistical significance
test is applied to further prune insignificant rules. On aver-
age, this removed 20–30 % of the generated rules from the350

result set.

2.1.5 Coupling heterogeneity

Data coupling creates a large set of transactions, covering
each year studied for each possible coupling inciter. Rules
that only have sufficient support when counted over multiple355

inciters would be difficult to interpret, thus we must hetero-
geneously generate rules for each coupling inciter separately,
as shown in Fig. 6. This allows us to identify preferential bias
towards a particular coupling inciter, and preserves informa-
tion relating to each data coupling individually.360

Fig. 6. Heterogeneous rule sets are generated for each coupling in-
citer individually, preserving the independence of their anomalies.

2.1.6 CHARM computational complexity

Finding all frequent itemsets for ARM is an NP-complete
problem that when bounding transaction length, becomes lin-
ear with complexity O(r ·n · 2l), where n is the transaction
count, l is the maximum itemset length, and r is the number365

of maximal frequent itemsets (Zaki, 2000). Rules are gener-
ated such that a user-specified minimum confidence and/or a
minimum support is satisfied. Thus, for an itemset of length
k, there are 2k − 2 potentially confident rules, making the
complexityO(c·2q), where c is the number of frequent item-370

sets, and q is the length of the longest frequent itemset (Tan
et al., 2001; Zaki, 2000).

CHARM leverages the Apriori algorithm, ensuring only
maximal frequent itemsets are considered for rule genera-
tion (Agrawal et al., 1993), while leveraging sequential ARM375

to identify such relationships across different temporal in-
stances (Huang et al., 2008). As mentioned in Sect. 2.1.5,
each inciter is studied heterogeneously. Thus, the method op-
erates in smaller parallel executions with low overhead.

2.2 Lasso multivariate regression380

Least absolute shrinkage and selection operator (Lasso) mul-
tivariate regression is an approach pioneered by Tibshirani
(1994) that takes a set of inputs and an outcome measure-
ment and fits a linear model, seeking to shrink the regression
and sparsify the predictor feature space. This is achieved by385

constraining the L1 norm of the β parameter vector B =
{β1,β2, . . . ,βn}, calculated as in Eq. (1), such that it is no
greater than a given s value to be minimized (Tibshirani,
1994).

L1norm = |B|1 =
n∑

r=1

|βr| (1)390

In the context of this study, this process highlights the
prominent phases of the features (Sect. 2.2.1). It derives the
temporal phases of predictors lagged behind a response of
interest, generating predictor coefficients indicating the mag-395

nitude and type of the modulatory relationships with said re-
sponse (Pendse et al., 2012).
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Table 1. Prominent season selections for climate variables

Seasons chosen (Top 3)1,2

# Climate Variable Abbrev.3 1 2 3 4 5 6 7 8 9 10 11 12
1 Nino1+2 Nino12m ⊕ + +
2 Nino3 Nino3m + ⊕ +
3 Nino4 Nino4m + + ⊕
4 Nino3.4 Nino34m ⊕ + +
5 Multivariate ENSO MEIm + ⊕ +
6 North Atlantic Oscillation NAOm + + ⊕
7 Atlantic Multidecadal Oscillation AMOm ⊕ + +
8 Atlantic Meridional Mode AMMm ⊕ + +
9 Lower Level Westerly Jets EOF1 LLW1m ⊕ + +

10 Lower Level Westerly Jets EOF2 LLW2m ⊕ + +
11 Lower Level Westerly Jets EOF3 LLW3m + + ⊕
12 Mediterranean Sea EOF1 MSEA1m ⊕ + +
13 Mediterranean Sea EOF2 MSEA2m ⊕ + +
14 Mediterranean Sea EOF3 MSEA3m + + ⊕
15 850hPa Geo-potential Height EOF1 GHT1m + ⊕ +
16 850hPa Geo-potential Height EOF2 GHT2m ⊕ + +
17 850hPa Geo-potential Height EOF3 GHT3m ⊕ + +
18 Indian Ocean Dipole IODm ⊕ + +
19 Atlantic ENSO EATLm + + ⊕

1 The topmost influential season for each variable is marked with a⊕
2 1 = Jan-Feb-Mar, 2 = Feb-Mar-Apr,. . .,12 = Dec-Jan-Feb

3 Subscript m represents chosen season (i.e. NAO3: Season 3 chosen for NAO)

Recent work on inference of modulatory relationships
based on Lasso multivariate regression of temporal and
spatio-temporal data includes means to improve upon the400

Lasso methodology. We apply the method proposed by
Pendse et al. (2012), given that it incorporates prominent
phase detection and significance assessment. Pendse et al.
(2012) presents an approach toward a data-driven, semi-
automatic inference of phenomenological physical models405

based on the Lasso multivariate regression model and quan-
tifies the influence of key “players” on the response of in-
terest (e.g., Sahel rainfall anomaly) through use of the Ex-
pected Causality Impact (ECI) score. The work presented
in Pendse et al. (2012) also proposes methods for search410

space pruning, significance estimation and impact analysis
that provide quantifiable metrics in terms of predictors’ con-
tributions to the rainfall variability and their probability of
detections (PODs).

2.2.1 Prominent phase detection415

We employ the methodology suggested by Pendse et al.
(2012) to identify the most prominent phases (i.e., seasons)
in the data. For the benefit of reproducibility, we utilized the
supplemental material provided therein (Pendse et al., 2012).
The results obtained by Pendse et al. (2012) were consis-420

tent with many well-known modulatory relationships from
prior climate knowledge (Chang et al., 2006; Marshall et al.,
2001; Sutton et al., 2000). These results complement the ex-
isting physical models and may help climate scientists cat-
egorize the correct season for the response of interest (e.g.,425

Sahel rainfall variability). Hence, by leveraging these promi-
nent phases (shown in Table 1), we can focus on features that
should have a stronger influence over the response.

2.2.2 Lasso pathway significance assessment

To assess pathway significance, we follow the method de-430

scribed in Pendse et al. (2012). That is, we apply the Monte
Carlo method to estimate the statistical significance of the re-
lationships found between the input features and the response
in terms of the null hypothesis, by iteratively permuting the
response and performing Lasso multivariate regression for435

this permuted data. This method allows us to prune insignifi-
cant edges in the Lasso network, represented by higher p val-
ues.

2.2.3 Lasso computational complexity

Given Lasso’s iterative nature in finding appropriate λ and440

β values, the computational complexity of Lasso is re-
liant on the q parameters and n observations provided
by the source data, as it would need to attain solu-
tions for all subsetsMk,k ∈ 1, . . . ,m (Meinshausen, 2007).
Hence, the computational complexity of this methodology445

is O (n · q ·min{n,q}) (Meinshausen, 2007). Furthermore,
since all variables must be at some point evaluated as the
Lasso response r ∈ q, this is multiplied by a factor q. How-
ever, the q value that affects the actual Lasso execution would
also grow smaller, as considerations are made to remove q450

parameters that temporally cannot modulate r.

2.3 Dynamic Bayesian networks

DBNs expand upon Hidden Markov Models (HMMs) and
Kalman Filter Models (KFMs), indexing instances of arbi-
trary variables. DBNs are represented as a structure similar455

to that of Bayesian Networks with the added benefit of in-
corporating the temporal space (Dean and Kanazawa, 1989;
Murphy, 2002). DBNs are a very popular means with which
to mine and represent modulatory relationships in spatial and
temporal data, given that the conditional probability distri-460

bution of each node can be estimated independently (Fried-
man et al., 1998; Murphy, 2002; de Kock et al., 2008). The
model’s dynamicity is obtained by combining a traditional
Bayesian network with a temporal Bayesian network that al-
lows for capturing behaviors of the Bayesian network over465

the temporal space, and is not to be confused with the idea
that the model changes over time (Murphy, 2002).

2.3.1 DBN pathway significance assessment

To assess pathway significance, we again apply the Monte
Carlo method to estimate the statistical significance of edges470

representing modulatory relationships. This affects the com-
putational complexity of the methodology, as each random
combination must be mined individually. Hence, to some-
what alleviate this matter, we verify only columns for which
relationships were found by the base method, and omit the475

features for which no relationships were found.
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2.3.2 DBN computational complexity

Several different implementations of DBN inference exist,
each with varying degrees of complexity. To mine the DBNs
for our problem, we leverage the toolkit provided by Zou480

and Feng (2009), built upon the design proposed in Mur-
phy (2002). This toolkit allows us to infer the network struc-
ture of the DBNs in O(T ), where T is the length of the se-
quence to be mined, which could be exponentially large de-
pending on the number of possible feature combinations a se-485

quence could contain (Murphy, 2002). Given our utilization
of the toolkit, we abide by this complexity for our estimation,
only restricting the execution by disallowing temporally-
infeasible edges (i.e. edges are only allowed between two
nodes if the originating node occurs temporally before the490

destination node). In doing so, we ensure that the direction-
ality of the network is temporally sound and fits proper mod-
ulatory relationships.

2.4 Construction of modulatory networks

Each of the aforementioned methodologies presents results495

in a different manner, affecting the interpretability of the in-
formation they provide. Hence, the resulting relationships
between climate factors should be structured such that all
possible modulatory pathways are captured in a compara-
ble context, while preserving the information given by each500

method.
The results provided by DBN capture a network of rela-

tionships between climate factors as a directed, acyclic graph
(DAG). Such a graph includes a set of vertices and directed
edges, which in the context of this study represent the climate505

factors and the relationships between them, respectively. Fur-
thermore, there are no cycles in the graph (i.e. following a
path originating at a given node will never lead back to that
node). This structure provides an intuitive visualization of
the behaviors in the system, as each edge represents the ex-510

istence of a relationship between the climate factors it con-
nects. Therefore, we adapt the results provided by CHARM
to a similar structure, by building a network where the edges
represent each possible combination of high/low anomalies,
directed from antecedent to consequent.515

However, given that CHARM uses coupled climate in-
dices, we must ensure the the networks generated for the
three methods can be equally interpreted. Hence, each Lasso
and DBN experiment will also use such coupled data and will
also be executed heterogeneously, as described in Sect. 2.1.5.520

This allows us to directly use the results provided by DBN,
given that it already adheres to the proper network structure.
As for the results from the Lasso experiments, we generate
the network of modulatory pathways by drawing a directed
edge from vertex A to B when a β coefficient was found for525

an execution where B was the response and A was a predic-
tand. Given the temporal window constraints set upon this
problem, we can follow the graph backwards from our de-

sired response to study all relationships, both direct and indi-
rect.530

2.5 Consensus modulatory network inference via infor-
mation fusion

To infer a consensus modulatory network for a functional
system response, we must combine the modulatory net-
works inferred by CHARM, Lasso multivariate regression,535

and DBN into a single unified network that captures the con-
sensus of the results. The field of evolutionary biology has
leveraged methods related to information fusion to combine
evidences found for specific gene classifications in collected
field data (Bailey and Gribskov, 1998; Li et al., 2008). Of540

the methods in this field, we chose to combine the resulting
p values of each edge for each modulatory inference method-
ology by overlaying the resulting graphs from each method-
ology upon one another, and performing Fisher’s combined
probability test, shown in Eq. (2)545

χ2 =−2
k∑

i=1

loge(pi) (2)

where pi represents the p value for the ith independent test.
This score presents a large χ2 test statistic when pi values are
smaller, suggesting the null hypotheses are not true for every550

test. In contrast, when all the null hypotheses are true, and
the pi are independent, χ2 has a chi-squared distribution with
2k degrees of freedom, where k is the number of tests being
combined. This can then be used to determine the p value for
χ2 (Fisher, 1932).555

After obtaining the combined p value, we compute an
ARM-inspired support count to quantify the amount of meth-
ods providing evidence for this result. With this, we deter-
mine which edges are worthwhile of inclusion, opening the
realm for climate scientists to determine which amount of ev-560

idence constitutes a satisfiable minimum for which an edge
is acceptable, and additional information can be obtained
from the underlying individual results. For example, if ARM
found some AHIGH→ BLOW relationship between features
A and B, Lasso or DBN also found evidence of some A→ B565

relationship, and we obtain a significant Fisher statistic, we
can state that this relationship is founded, since 3 out of the
6 possible method results have evidence of such relationship.
Furthermore, given the information provided by ARM’s re-
sult highlighting specific phases, domain scientists can inves-570

tigate the AHIGH→ BLOW relationship in further detail.
We use these statistics to determine a consensus in the re-

lationships found by the methods employed and build a net-
work to capture said consensus. Note that the number of re-
lationships in the consensus result will not be restricted by575

the methodology that identifies the fewest relationships. In-
stead, each methodology serves as evidence for the consen-
sus result and affects the strength of the evidence provided
for a particular relationship. Hence, each method contributes
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Table 2. Regions for generated indices

Index Region
IOD 10◦S-10◦N, 50◦E-70◦E

10◦S-0◦, 90◦E-110◦E
LLW (EOF 1,2,3) 0◦-20◦N, 60◦W-25◦E
MSEA (EOF 1,2,3) 30◦N-46◦N, 6◦W-36◦E
GHT (EOF 1,2,3) 0◦-40◦N, 40◦W-30◦E
EATL 3◦S-3◦N, 30◦W-0◦

to the consensus result, with no specific methodology act-580

ing as a determining factor that would bias the result towards
that specific methodology. Determining a bound at which to
remove rules from the consensus result based on the amount
of evidence provided is a topic of future work.

3 Results and discussion585

Setting the Sahel rainfall anomaly as the system’s response
presents an ideal model for assessing the climatological rel-
evance of modulatory pathways identified by CHARM. We
evaluate the computational validity of CHARM, using the
criteria defined in Sect. 2.1.4, by studying the mined rules590

for the connections it identifies, and compare the results to
those of the other approaches and study the effect of combin-
ing the rules as described in Sect. 2.5.

3.1 Data

Table 1 presents the data used for this study, which was595

obtained from the NCEP/NCAR (2014), along with rain-
fall data obtained from the UDel AirT Precip dataset pro-
vided by NOAA/OAR/ESRL (2014). Along with these, our
study uses new indices created by climate scientists (items
8–9) using empirical orthogonal function (EOF) techniques600

(Wilks, 2006) to isolate the dominant mode(s) in reanalysis
data (PSD, 2014). The inclusion of the new indices is based
on the fundamental knowledge that Sahel climate is mod-
ulated by different climatic drivers (Hurrell, 1995; Rowell,
2003).605

These drivers originate from the ocean, atmosphere, land
surface, and vegetation, where they interact intricately, and
ultimately exert a strong influence over the Sahel region.
However, the tropical Pacific, the Atlantic, and the Indian
Oceans, as well as the Mediterranean Sea and the overlying610

atmosphere are key drivers of Sahel climate, so the creation
of such indices ensures they are given equal chance to partic-
ipate in the experiment, represented in Table 2. Hence, where
climate literature suggested a teleconnection between a given
climate variable and Sahel rainfall, but a representative cli-615

mate index for it was not readily available from NCAR,
an EOF analysis of the 850mb height field was created in-
stead, using reanalysis data. Each mode is represented as
feature〈#〉 (i.e., the first mode of variance over the Mediter-
ranean Sea is referred to as MSEA1).620

We select the most prominent seasons for these indices,
as described in Sect. 2.2.1, and utilize eastern Sahel rainfall
over the season July-August-September (JAS) as the desired
response. These variable-phase combinations are denoted as
feature〈phase〉, where the subscript corresponds to temporal625

phases (i.e., 1 = Jan-Feb-Mar, 2 = Feb-Mar-Apr. . . ,12= Dec-
Jan-Feb). Thus, we can contrast these to provide a descrip-
tion of the sub-region’s climate variability in association to
this response for the period of 1950–2008.

3.2 Network interpretations630

We will discuss specific use cases of our experiment herein.
Images for the generated networks for each method, their as-
sociated DAG matrices and combination metrics can be ob-
tained via supplemental material1.

3.2.1 Rainfall interconnections635

Table 3 captures the relationships known from reference ma-
terial in contrast to the findings of the evaluated methods for
the EATL8 coupling inciter, which implies that for the given
data couplings, the coupling inciter used was Atlantic ENSO
in the temporal phase of August-September-October.. This640

table serves to present length of pathway from the variable
in question to the expected rainfall response, so as to verify
the findings of this experiment in terms of known relation-
ships gathered over two decades of research (Tetteh, 2012).
The dynamical substance in the processes involved and tele-645

connections in these mining techniques is highlighted.
Lasso reveals that four oceanic modes, the Pacific (repre-

sented by MEI, Nino 3.4 and Nino 4), IOD, MSEA3, and
AMO influence the Eastern Sahel rainfall (Rowell, 2003).
The dynamical processes inferred from warm ocean sur-650

face anomalies associated with the IOD (Lu, 2009), MSEA3
(Rowell, 2003) and AMO (Zhang and Delworth, 2006) are
related to an increase in the magnitude of the main rainfall
season in the Sahel. The IOD and MSEA3 specifically facili-
tate positive moisture advection whereas the AMO displaces655

the Intertropical Convergence Zone (ITCZ) to its climatolog-
ical position over the Sahel. These mechanisms are tied to
moisture transport from the tropical Atlantic by LLW2 and
LLW3. On the contrary, a warming of the Pacific is gener-
ally associated with rainfall diminution over the Sahel Jani-660

cot et al. (1996).

3.3 Process evaluation

We find that Lasso and CHARM coincide in capturing
AMM, the most important oceanic mode governing decadal
climate variability of the Sahel, and which primarily de-665

termines moisture availability (Grossman and Klotzbach,
2009). The positive (negative) phase of the AMM is associ-
ated with rainfall enhancement (suppression). However, its

1http://freescience.org/cs/cni combined
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Fig. 7. Number of relationships found in network, averaged across
coupling inciters

Table 3. Comparison of Known Relationships of climate features
with rainfall response with mined network proximity1,2,3

Method
CHARM Lasso DBN

# Climate Variable Abbr. ⇒ 1 2 3 1 2 3 1 2 3
1 Atlantic Meridional Mode AMM D X X
2 Atlantic Multidecadal Osc. AMO D X X
3 Atlantic ENSO EATL I
4 Geo-potential Height EOF1 GHT1 D X X
5 Geo-potential Height EOF2 GHT2 D X X X
6 Geo-potential Height EOF3 GHT3 D X X X
7 Indian Ocean Dipole IOD D X X
8 Lower Level W. Jets EOF1 LLW1 D X X
9 Lower Level W. Jets EOF2 LLW2 D X X

10 Lower Level W. Jets EOF3 LLW3 D X X X
11 Mediterranean Sea EOF1 MSEA1 D X X
12 Mediterranean Sea EOF2 MSEA2 D X X X
13 Mediterranean Sea EOF3 MSEA3 D X X
14 Multivariate ENSO MEI I X
15 Niño1+2 Nino12 I X
16 Niño3 Nino3 I X X
17 Niño4 Nino4 I X X X
18 Niño3.4 Nino34 I X X
19 North Atlantic Oscillation NAO I X X X

1⇒: Known relationship, I: Indirect, D: Direct
2 References for known relationships by row: 1: Grossman and Klotzbach (2009), 2:

Zhang and Delworth (2006), 3: Zebiak (1993), 4-6: Kidson and Newell (1977), 7: Saji
et al. (1999), 8-10: Nicholson (2009), 11-13: Rowell (2003), 14-18: Nicholson (1997),

19: Hurrell (1995)
3 Relationships with EOF modes are unknown, but labels apply for actual climate

phenomena.

role or impact is modulated directly or indirectly by dis-
tinct phases of Nino3, MSEA1 and MSEA2. While warm670

(cold) phase of Nino3 suppresses (enhances) moisture flux
over the Sahel, MSEA1 and MSEA2 have a competing ef-
fect, with positive and negative moisture transport over the
Mediterranean Sea respectively, and are involved in nega-
tive and positive moisture transport over the Mediterranean675

Sea. The model also reveals high (low) phase of LLW1 over
the Atlantic is associated with strengthening (weakening) of
westerly moisture flow. This co-occurs with GHT 1, 2, and
3, which determine troughs and ridges that govern high and
low rainfall anomalies.680

Lasso and DBN coincide in capturing extra-tropical NAO
forcing. Although the NAO is known to impact Sahel rainfall

(Hurrell, 1995), the mechanism by which this occurs is un-
clear. A link to the tropical Atlantic, particularly through the
LLW’s, is suggested by the results here. It is possible that the685

moisture flux from the tropical Atlantic is dependent on the
phase of the NAO. On a finer scale, the model also predicts
a direct link to the NAO. The association between the NAO
and Sahel rainfall may be multifaceted, and our results are
being further investigated by the authors based on an NAO-690

driven hypothesis over the entire West African Sahel (Tetteh,
2012).

Figure 7 captures the aggregate number of relationships
found by each method, averaged across all coupling in-
citers studied. We find that per each coupling inciter, Lasso695

is the more sensitive methodology, finding edges for most
possible feature combinations. Given the design of our
CHARM experiment capturing phase-specific relationships
(i.e.,AHIGH→BLOW), as described in Sect. 2.1.3, we group
all possible high/low combinations to merely visualize how700

many relationships CHARM found as a whole. We note that
these highly coincide with the findings of Lasso, but find
their share of unique relationships that contribute to the fi-
nal result. Lastly, we find that DBN produces very few rela-
tionships, but the majority of these contribute to the Fisher705

statistic for the three methods, as 97 % of the found relation-
ships coincide with either CHARM or LASSO, while 60 %
coincides with both. The central area of Fig. 7 would lead to
further study, as it indicates all three methods provided evi-
dence of relationships in this area.710

Given the intent is to find drivers for the rainfall feature,
Fig. 10 captures the average number of direct relationships to
the rainfall response found by each method. This again high-
lights the sensitivity of Lasso, as of a maximum 20 features,
an average 17.67 were selected, whilst CHARM and DBN715

find less such relationships. When evaluating the coupling
inciter EATL8 (see Fig. 9), we see this in further detail, as
while Lasso captures 17 direct relationships to the Rainfall
response, CHARM and DBN capture 8 and 1, respectively.
Hence, Lasso appears to detract from discovering indirect re-720

lationships, unless β values are inspected directly. This espe-
cially affects the fused network, as most features are marked
as directly associated with the response (see Fig. 8).

3.3.1 Fused network relationships

Figure 8 captures the resulting network after the different725

models are fused into a consensus result, and presents the
final set of edges provided by the model. The vast number
of edges presented is mostly driven by the high sensitiv-
ity of the Lasso methodology, and as mentioned in Section
3.3, such number of direct connections can detract from un-730

derstanding indirect rainfall relationships. The network met-
rics captured in Table 4 highlight that AMM has the high-
est betweenness centrality in the case of CHARM and the
fused network, meaning it is found in all shortest paths in
the network, marking AMM’s importance in the network, as735
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Fig. 8. Resulting combined network for coupling inciter EATL8

stated in Sect. 3.2.1. The clustering coefficient for CHARM
and DBN have standard deviations σ = 0.02 and σ = 0.11,
respectively, but σ = 0.01 when fused together, indicating
Lasso’s sensitivity plays a key role in the fused result, as in
the individual Lasso graph, most nodes were hubs for many740

inbound connections. Furthermore, we find that the fused
network performed best at creating a cluster with the desired
Rainfall response, seemingly best influenced by the CHARM
network, although given Fig. 9, we know the influence of
Lasso again came into play. Hence, exploring a means to745

limit Lasso’s influence may be a beneficial next step for fu-
ture work.

4 Conclusions

We evaluated three different methods for finding modulatory
relationships in spatio-temporal climate data and validated750

the results obtained against known relationships modulating
rainfall in the Sahel region of Western Africa. These results
show that each method has its benefits and drawbacks. Not-
ing that significant changes had to take place for utilizing
CHARM for this purpose given spatial alignment issues, we755

Fig. 9. Relationships directly associated with rainfall for λ=
EATL8

Table 4. Network vertex statistics for coupling inciter EATL8

Method
Betweenness Centrality Clustering Coefficient

# Var. CHARM Lasso DBN Fused CHARM Lasso DBN Fused
1 AMM 3.7 0 0 1 0.392 0.405 0 0.448
2 AMO 1.367 7.983 1 0 0.414 0.321 0.167 0.446
3 EATL 0 0 0 0 0 0 0 0
4 GHT1 0 0.374 0 0 0.424 0.374 0 0.445
5 GHT2 0 0.338 0 0 0.392 0.338 0.167 0.448
6 GHT3 0.917 0.583 6.5 0 0.413 0.364 0.143 0.448
7 IOD 0 2.233 0 0 0.442 0.346 0 0.446
8 LLW1 1.7 0 0 0 0.412 0.379 0 0.473
9 LLW2 0.417 4.4 8 0 0.438 0.352 0.133 0.448

10 LLW3 0 0.833 0 0 0.419 0.402 0.2 0.445
11 MSEA1 1.7 0 0 0 0.412 0.4 0.333 0.473
12 MSEA2 1.733 5.4 0.5 0 0.393 0.343 0.333 0.445
13 MSEA3 0.617 0.75 1 0 0.415 0.382 0.167 0.448
14 MEI 0 1.983 0 0 0.482 0.352 0 0.473
15 Nino12 0 0.433 0 0 0.449 0.35 0.167 0.468
16 Nino3 1.7 1 0 0 0.412 0.417 0 0.473
17 Nino4 0.617 0.583 2 0 0.415 0.346 0.167 0.448
18 Nino34 1.367 0.167 4 0 0.414 0.429 0 0.446
19 NAO 0.167 0.25 4 0 0.44 0.433 0 0.445
20 Rainfall 0 0 0 0 0.446 0.338 0 0.46

devised data coupling as a means with which to study the
relationships in the underlying data. These changes served
to make CHARM an efficient methodology for addressing
the data-driven discovery of predictive, climatologically rele-
vant, and statistically significant modulatory pathways in the760

physical model of the Sahel rainfall anomaly.
We also evaluated the consensus network obtained af-

ter combining the results of these methods via informa-
tion fusion. In any case, this study served to validate these
methods against known relationships from over two decades765

of hypothesis-driven and first-principles research. The IOD,
ENSO, MSEA and AMO were confirmed as important SST
anomalies modulating rainfall in the region, as previously
discussed in the climate literature. The relationship with the
NAO is found to have both direct and indirect components,770

and is particularly related to equatorial westerlies (LLWs)
in the Atlantic, known to influence the region (Nicholson,
2009). It is hypothesized that the NAO modulates the posi-
tion and strength of the equatorial westerlies, impacting the
Tropical Easterly Jet and therefore Sahel rainfall. This hy-775

pothesis is currently under investigation by climate domain
scientists (i.e. (Tetteh, 2012)), based on the results of this
study, and serves as an example of a relationship which is
not fully understood being highlighted by the framework pre-
sented here.780

4.1 Future Work

In this work, we used the same set of climate indices for
all the individual methodologies employed, to facilitate the
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comparison and fusion of results. It is possible that using
different datasets or different time/spatial series for each785

methodology can improve their individual results, and in turn
the overall outcome of the models. However, additional con-
siderations would be needed for interpreting which models
provide evidence of particular relationships between individ-
ual climate indices.790

Furthermore, the presented CHARM approach studies
rules heterogeneously, which is for the benefit of under-
standing rules with significant support within particular cou-
pling inciters. However, future work would include address-
ing rules across multiple inciters, given the geophysical na-795

ture of the underlying data and understanding that climate
relationships are in reality affected by multiple inciters.

Additionally, given our findings regarding Lasso’s sensi-
tivity to finding relationships at varying beta magnitudes, fu-
ture work will be directed towards limiting such sensitivity800

and/or its influence in the fused network.
Finally, some of the modulatory relationships identified by

these methods may represent underlying causal pathways in
the climate system. Future work will also focus on infer-
ring these causal pathways by leveraging causal modeling805

frameworks, such as Causal Bayesian Networks. Under this
framework, inferring causal relationships becomes a prob-
lem of network structure learning. Several score-based and
constraint-based algorithms have been proposed to this end
(Spirtes, 2010). However, due to the inherent complexity of810

the climate system, learning this causal network structure
is not a simple task. Future work should include identify-
ing an appropriate causal inference algorithm for the prob-
lem at hand, by determining which underlying assumptions
must hold to infer causal models for the climate domain. This815

causal inference algorithm should not assume causal suffi-
ciency nor acyclicity of the causal structure (Hyttinen et al.,
2013), since latent variables (i.e., confounders) and feedback
loops are ubiquitous in the climate system. This algorithm
should also be able to handle the high-dimensionality and820

small sample size of climate data (Bühlmann, 2013). Further-
more, an algorithm that allows to incorporate prior knowl-
edge (i.e., known causal relationships from domain knowl-
edge) would also be desirable (Borboudakis et al., 2011).
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