Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/npg-2021-35
https://doi.org/10.5194/npg-2021-35
12 Nov 2021
 | 12 Nov 2021
Status: this preprint has been withdrawn by the authors.

Brief communication: An innovation-based estimation method for model error covariance in Kalman filters

Eviatar Bach and Michael Ghil

Abstract. We present a simple innovation-based model error covariance estimation method for Kalman filters. The method is based on Berry and Sauer (2013) and the simplification results from assuming known observation error covariance. We carry out experiments with a prescribed model error covariance using a Lorenz (1996) model and ensemble Kalman filter. The prescribed error covariance matrix is recovered with high accuracy.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download

This preprint has been withdrawn.

Short summary
Data assimilation (DA) is the process of combining model forecasts with observations in order to...
Share