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Abstract. We present a simple innovation-based model error covariance estimation method for Kalman filters. The method

is based on Berry and Sauer (2013) and the simplification results from assuming known observation error covariance. We

carry out experiments with a prescribed model error covariance using a Lorenz (1996) model and ensemble Kalman filter. The

prescribed error covariance matrix is recovered with high accuracy.

1 Introduction5

The Kalman filter is a state estimation method for combining model forecasts with noisy observations, and forms the basis for

many data assimilation (DA) methods (Ghil et al., 1981; Kalnay, 2002). The estimation and incorporation of model error is an

important aspect of the filtering problem. We briefly introduce the problem.

Following the notation of Ide et al. (1997), we assume that the true state evolution is given by

xt(ti) =Mi−1(xt(ti−1)) + η(ti−1), (1)10

where xt(ti) is the true state at time ti,Mi is the dynamic model at time ti, and η is a model error with mean 0 and covariance

Q. The observations are given by

y(ti) =Hi(xt(ti)) + ε(ti), (2)

whereHi is called the observation operator, and ε is an observation error with mean 0 and covariance R.

The standard Kalman filter assumesMi andHi to be linear. The extended Kalman filter (EKF) instead uses time-dependent15

linearizations Mi and Hi, often called linear tangent models, in the estimation of the covariances, while the fully nonlinear

operators are used in advancing the state x(ti) itself. Ensemble Kalman filters (EnKFs) directly use the nonlinear forward

model, and some EnKFs also allow for the use of nonlinear observation operators. In the rest of the paper we assume that the

observation operator H is linear and time-independent; if it is not, a linearization can be substituted.

The Kalman filter then combines the observations y with model forecasts xf with covariance Pf, resulting in the analysis20

state xa with covariance Pa. The next forecast is then given by

xf(ti+1) =Mi(xa(ti)). (3)
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The forecast error covariance Pf at time ti+1 can be estimated by

Pf(ti+1) = MiPa(ti)MT
i + Q(ti), (4a)

= Pp(ti+1) + Q(ti), (4b)25

c.f. Ghil and Malanotte-Rizzoli (1991) or Tandeo et al. (2020); this is exact for a linear model. The first term, Pp, in the above

estimate can be identified as the one-step predictability error (Berry and Sauer, 2013). This error is due to the effect of the

system’s dynamics on the initial conditions. Kalman filters, without further modification, generally only use this term, and are

thus prone to underestimate Pf. This has led to a variety of methods for estimating Q, often simultaneously with estimating

R; see the reviews by Duník et al. (2017) and Tandeo et al. (2020).30

Then, adding the estimated Q to Pp is known in the DA literature as additive inflation—as opposed to multiplicative inflation,

where Pp is multiplied by a scalar greater than 1. Additive inflation generally works better than multiplicative inflation in

accounting for model errors, since multiplicative inflation assumes that model errors will span the same subspace as the errors

due to initial conditions, which is not generally the case (Hamill and Whitaker, 2005).

Here, we suggest a method for estimating Q that is closely related to the one of Berry and Sauer (2013), but we assume35

that the observation noise covariance R is known. This assumption allows us to derive a simple estimate for Q that does not

require either lagged innovations or the gain matrix. Nor is model linearization required in the case of an ensemble Kalman

filter applied to a nonlinear forward model.

2 Method

Many methods for estimating Q rely on the statistics of the innovations d(ti) = y(ti)−Hxf(ti), which equal the difference40

between observations and forecasts. A standard result for the Kalman filter states that

E[d(ti)d(ti)T ] = HPf(ti)HT + R; (5)

see, for instance, Desroziers et al. (2005) or Simon (2006, Sec. 10.1).

If the state is not fully observed, as is usually the case in DA problems, then H is not invertible. However, for idealized cases

when H is invertible, we can obtain an estimate Q̂ of Q by substituting Eq. (4b) into Eq. (5) and rearranging:45

Q̂(ti−1) = H−1(E[d(ti)d(ti)T ]−R−HPp(ti)HT )H−T . (6)

See section 2.2 below for the general case in which H is not invertible.

In order to avoid abrupt changes in Q̂ over time, and to preserve positive semidefiniteness (see below), a temporal smoothing

needs to be applied:

Q̃(ti+1) = ρQ̂(ti) + (1− ρ)Q̃(ti), (7)50

where 0< ρ < 1 is a tunable parameter (Berry and Sauer, 2013; Tandeo et al., 2020), and Q̃ is the smoothed estimate. Then,

Pf(ti+1) is estimated by adding Q̃(ti) to the Pp estimated by the filter. In what follows, we drop the time indices for simplicity.
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Covariance matrices must be positive semidefinite: in other words, their smallest eigenvalue must satisfy λmin ≥ 0. Due to

the observation noise entering the E[ddT ] term in Eq. (6), the estimate Q̃ can often lack this property. To avoid this problem,

a small enough ρ must be chosen, and the “initial guess” Q̃(t0) should be positive semidefinite.55

In general, the larger the observation noise relative to the model error, the smaller ρ must be. However, if the estimated Q̂

does become indefinite at some tj , definiteness can be restored. The matrix satisfying λmin ≥ δ that is nearest in the Frobenius

norm ‖ · ‖F (Horn and Johnson, 2013) to the problematic one at t= tj can be computed by using the spectral decomposition

and setting all λi < δ to δ (Cheng and Higham, 1998).

2.1 Ensemble filters60

In the case of an ensemble Kalman filter, we estimate E[ddT ]' (y−Hx̄f)(y−Hx̄f)T , where x̄f is the mean of the forecast

ensemble.

In ensemble filters, Pp is estimated as

Pp =
1

m− 1

m∑

i=1

(xf
i− x̄f)(xf

i− x̄f)T , (8)

where xf
i is the ith ensemble member and m is the ensemble size. We use this Pp directly in Eq. (6), thus avoiding the need for65

a tangent linear model, as in Eq. (4a), whenM is nonlinear.

Furthermore, instead of adding Q̃ to Pp, samples drawn from N (0,Q̃) can be added to each ensemble member. Mitchell

and Carrassi (2015) found that this stochastic method performed better than directly adding Q to Pp, although modified

deterministic methods can work better for square-root filters (Raanes et al., 2015).

2.2 Rank-deficient observations70

When H is not invertible, we can find a solution that minimizes the Frobenius norm, as in Berry and Sauer (2013). We let

Q̂ in Eq. (7) be a linear combination of fixed matrices, Q̂ =
∑

p qpQp. This formulation can be used to specify a simplified

structure, such as a diagonal matrix or a block-constant one.

Let q be the vector of coefficients {qp}. Then,

q = argmin
{qp}

∥∥∥∥∥C−
∑

p

qpHQpHT

∥∥∥∥∥
F

, (9)75

where

C = E[ddT ]−R−HPpHT . (10)

The minimization in Eq. (9) is carried out by finding the least-squares solution of

Aq' vec(C), (11)

where the pth column of A is vec(HQpHT ).80

3

https://doi.org/10.5194/npg-2021-35
Preprint. Discussion started: 12 November 2021
c© Author(s) 2021. CC BY 4.0 License.



3 Numerical experiments

We apply the proposed method to the Lorenz (1996) model:

dxi

dt
=−xi−2xi−1 +xi−1xi+1−xi +F, (12)

where we use 40 variables, the indices are cyclical, and F = 8. The characteristic time of the model—measured by the recipro-

cal of the largest Lyapunov exponent—is about 0.6, and we apply a 4th-order Runge–Kutta scheme with ∆t= 0.05 to integrate85

it.

The true Q matrices are prescribed as follows. We generate a 40×40 band matrix B with bandwidth 20, and the numbers on

the band are drawn from a uniform distribution U(0,1). The experiments are carried out with two different orders of magnitude

of the model error, one with Q1 = (1/10)(B− 0.4J40)(B− 0.4J40)T and the other with Q2 = (1/100)(B− 0.4J40)(B−
0.4J40)T , where J40 is the 40× 40 matrix of ones. The matrix Q1 is shown in Fig. 2a.90

We carry out three distinct experiments:

1. Model error is Q1 and the state is fully observed.

2. Model error is Q1 but only every second xi is observed. In this experiment, furthermore, we parameterize Q as a block-

constant matrix of 4× 4 blocks.

3. Model error is Q2 and the state is fully observed.95

For each experiment, we use the ensemble transform Kalman filter (ETKF: Bishop et al., 2001) with 80 ensemble members.

At every timestep, we draw a vector from the multivariate normal distributionN (0,Q) and add it to all the ensemble members.

We take R = 0.4I, with ρ= 10−3 for experiment 1 and ρ= 10−4 for experiments 2 and 3. The estimate Q̃ is initialized with

0.1I40 for experiments 1 and 3 and with I40 for experiment 2. The number of DA cycles is 3 000 for experiment 1, 20 000 for

experiment 2, and 15 000 for experiment 3.100

3.1 Results

Figures 1 and 2b shows the results of experiment 1. After about 2 000 DA cycles, the error in estimating Q1 stabilizes (Fig. 1a),

which also results in lower analysis errors when Q̃1 is used in the DA process (Fig. 1b). Furthermore, Q1 is recovered with

high fidelity (Fig. 2b). Note that, for the analysis errors, we use the continuous ranked probability score (CRPS: Hersbach,

2000), a probabilistic error metric, to measure the discrepancy between the ensemble and the true probability distributions.105

Figure 2c shows the estimate of Q1 obtained in experiment 2, with partial observations and a block-constant formulation. In

this case, too, the method successfully recovers the coarse structure of Q1.

Finally, Figure 3 shows the results of experiment 2. Here, since ρ is smaller, it takes longer for the error to stabilize. The

structure Q2 is also recovered with high fidelity (not shown).
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Figure 1. Numerical results for experiment 1: (a) the root-mean-square error (RMSE) in the Q1 estimate; and (b) analysis error in the state

x, measured by the continuous ranked probability score (CRPS). A 10-timestep moving average is applied in (b).
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(b) Asymptotic Q1 estimate with full-rank

observations.
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Figure 2. Asymptotic estimates of the model error covariance Q1: (a) true Q1; (b) results of experiment 1; and (c) results of experiment 2.
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Figure 3. Same as Fig. 1, but for experiment 3. A 100-timestep moving average is applied in (b).
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4 Conclusions110

We present a simple method for estimating the model error covariance matrix in a Kalman filter. When applying an ensemble

Kalman filter, our method does not require lagged innovations, nor the gain matrix or the linear tangent model. The estimated

model error covariance can then be added to the forecast covariance estimated by the filter. Such a form of additive inflation

generally performs better than the multiplicative inflation more often used in the literature.

Code availability. The Julia code implementing this method is available at https://github.com/eviatarbach/model_error_estimation.git115
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