Articles | Volume 32, issue 1
https://doi.org/10.5194/npg-32-75-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-32-75-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NORAD tracking of the 2022 February Starlink satellites and the immediate loss of 32 satellites
Fernando L. Guarnieri
CORRESPONDING AUTHOR
Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil
Bruce T. Tsurutani
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
retired
Rajkumar Hajra
CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Ezequiel Echer
Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil
Gurbax S. Lakhina
Indian Institute of Geomagnetism, IIG/UAS, Navi Mumbai, India
retired
Related authors
No articles found.
Adriane Marques de Souza Franco, Rashmi Rawat, Mauricio José Alves Bolzan, and Ezequiel Echer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4911, https://doi.org/10.5194/egusphere-2025-4911, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
This study analyzed 40 corotating interaction region driven geomagnetic storms to see how they affect Earth's magnetic tail. We found that short, rapid energy pulses (4 hours) dominated the magnetotail (cyclic substorm periods). Further, the HILDCAA events that occur during the recovery phase could cause a spread of energy to periodicities of 2 to 12 h in the auroral region. Spectral indices results suggest a strong turbulence in the magnetotail and auroral regions during recovery phases.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Katharina Ostaszewski, Karl-Heinz Glassmeier, Charlotte Goetz, Philip Heinisch, Pierre Henri, Sang A. Park, Hendrik Ranocha, Ingo Richter, Martin Rubin, and Bruce Tsurutani
Ann. Geophys., 39, 721–742, https://doi.org/10.5194/angeo-39-721-2021, https://doi.org/10.5194/angeo-39-721-2021, 2021
Short summary
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Rajkumar Hajra
Ann. Geophys., 39, 181–187, https://doi.org/10.5194/angeo-39-181-2021, https://doi.org/10.5194/angeo-39-181-2021, 2021
Short summary
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Cited articles
Akasofu, S. I.: The development of the auroral substorm, Planet. Space Sci., 12, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964.
Anderson, K. A.: Soft radiation events at high altitude during the magnetic storm of August 29–30, 1957, Phys. Rev., 111, 1397–1405, https://doi.org/10.1103/PhysRev.111.1397, 1958.
Araki, T.: A Physical Model of the Geomagnetic Sudden Commencement, in: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, edited by: Engebretson, M. J., Takahashi, K., and Scholer, M., Geophysical Monograph Series, AGU, https://doi.org/10.1029/GM081p0183, 1994.
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R.: Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86, 6673–6684, https://doi.org/10.1029/JA086iA08p06673, 1981.
Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R. A., Michels, D., Farrugia, C., Lin, R. P., and Larson, D. E.: A magnetic cloud containing prominence material: January 1997, J. Geophys. Res.-Earth, 103, 277–285, https://doi.org/10.1029/97JA02768, 1998.
Carlson, C. W., McFadden, J. P., Ergun, R. E., Temerin, M., Peria, W., Mozer, F. S., Klumpar, D. M., Shelley, E. G., Peterson, W. K., Moebius, E., Elphic, R., Strangeway, R., Cattell, C., and Pfaff, R.: FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating, Geophys. Res. Lett., 25, 2017–2020, https://doi.org/10.1029/98GL00851, 1998.
Clark, S.: SpaceX launches third Falcon 9 rocket mission in three days, Spaceflight Now, published on 3 February 2022, https://spaceflightnow.com/2022/02/03/spacex-launches-third-falcon-9-rocket-mission-in-three-days/ (last access: 20 March 2024), 2022a.
Clark, S.: Solar storm dooms up to 40 new Starlink satellites, Spaceflight Now, published on 8 February 2022, https://spaceflightnow.com/2022/02/08/solar-storm-dooms-40-new-starlink-satellites (last access: 20 March 2024), 2022b.
Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., Ren, D., Chen, X., Lei, J., and Wang, Y.: Unveiling the space weather during the Starlink Satellites destruction event on 4 February 2022, Space Weather., 20, e2022SW003152, https://doi.org/10.1029/2022SW003152, 2022.
DeForest, S. E. and McIlwain, C. E.: Plasma clouds in the magnetosphere, J. Geophys. Res., 76, 16, 3587–3611, 1971.
Dungey, J. W.: Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Echer, E., Gonzalez, W. D., Tsurutani, B. T., and Gonzalez, A. L. C.: Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, https://doi.org/10.1029/2007JA012744, 2008.
Fang, T.-W., Kubaryk, A., Goldstein, D., Li, Z., Fuller-Rowell, T., Millward, G., Singer, H. J., Steenburgh, R., Westerman, S., and Babcock, E.: Space weather environment during the SpaceX Starlink satellite loss in February 2022, Space Weather, 20, e2022SW003193, https://doi.org/10.1029/2022SW003193, 2022.
Fiori, R. A. D., Boteler, D. H., and Gillies, D. M.: Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible, Space Weather, 12, 76–91, https://doi.org/10.1002/2013SW000967, 2014.
Fuller-Rowell, T. J., R. Akmaev, F. Wu, A. Anghel, N. Maruyama, D. N. Anderson, M. V. Codrescu, M. Iredell, S. Moorthi, H.-M. Juang, Y.-T. Hou, and Millward, G.: Impact of terrestrial weather on the upper atmosphere, Geophys. Res. Lett., 35, L09808, https://doi.org/10.1029/2007GL032911, 2008.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5571–5792, https://doi.org/10.1029/93JA02867, 1994.
Gopalswamy, N.: The Dynamics of Eruptive Prominences, in: Solar Prominences, Astrophysics and Space Science Library, Volume 415, edited by: Vial, J.-C. and Engvold, O., Springer International Publishing, Cham, Switzerland, 381–409, ISBN 978-3-319-10416-4, https://doi.org/10.1007/978-3-319-10416-4, 2015.
Gopalswamy, N.: The Sun and Space Weather, Atmosphere, 13, 1781, https://doi.org/10.3390/atmos13111781, 2022.
Gopalswamy, N., Hanaoka, Y., Kosugi, T., Lepping, R. P., Steinberg, J. T., Plunkett, S., Howard, R. A., Thompson, B. J., Gur man, J., Ho, G., Nitta, N., and Hudson, H. S.: On the relationship between coronal mass ejections and magnetic clouds, Geophys. Res. Lett., 25, 2485–2488, 1998.
Hosokawa, K., Kullen, A., Milan, S., Reidy, J., Zou, Y., Frey, H. U., Maggiolo, R., and Fear, R.: Aurora in the Polar Cap: A Review, Space Sci. Rev., 216, 15, https://doi.org/10.1007/s11214-020-0637-3, 2020.
Illing, R. M. E. and Hundhausen, A. J.: Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. Journal of Geophysical Research, 91., 10951pp, https://doi.org/10.1029/ja091ia10p10951, 1986.
Joselyn, J. A. and Tsurutani, B. T.: Geomagnetic Sudden Impulses and Storm Sudden Commencements – A Note on Terminology, EOS, 71, 47, 1808–1809, 1990.
Kakoti, G., Bagiya, M. S., Laskar, F. I., and Lin, D.: Unveiling the combined effects of neutral dynamics and electrodynamic forcing on dayside ionosphere during the 3–4 February 2022 “SpaceX” geomagnetic storms, Nature Sci. Repts., 13, 18932, https://doi.org/10.1038/s41598-023-45900-y, 2023.
Kozyra, J. U., Manchester, W. B., Escoubet, C. P., Lepri, S. T., Liemohn, M. W., Gonzalez, W. D., Thomsen, M. W., and Tsurutani, B. T.: Earth's collision with a solar filament on 21 January 2005: Overview, J. Geophys. Res.-Space, 118, 5967–5978, 2013.
Lakhina, G. S. and Tsurutani, B. T.: Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms, Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, 2017.
Lepri, S. T. and Zurbuchen, T. H.: Direct observational evidence of filament material within interplanetary coronal mass ejections, Astrophys. J. Lett., 723, L22–L27, 2010.
Lühr, H., Schlegel, K., Araki, T., Rother, M., and Förster, M.: Night-time sudden commencements observed by CHAMP and ground-based magnetometers and their relationship to solar wind parameters, Ann. Geophys., 27, 1897–1907, https://doi.org/10.5194/angeo-27-1897-2009, 2009.
Manley, S.: How Do Starlink Satellites Navigate To Their Final Operational Orbits, Youtube, https://www.youtube.com/watch?v=VIQr1UyhwWk (last access: 20 March 2024), 2021.
Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., and Park, Y.-D.: Geometrical Relationship between Interplanetary Flux Ropes and Their Solar Sources, Sol. Phys., 290, 1371–1397, 2015.
McDowell, J.: Jonathan's Space Pages, https://planet4589.org (last access: 20 March 2024), 2023.
NOAA: GOES X-Ray Flux, National Oceanic and Atmospheric Administration – Space Weather Prediction Center, https://www.swpc.noaa.gov/products/goes-x-ray-flux (last access: 20 March 2024), 2022.
Oliveira, D. and Samsonov, A.: Geoeffectiveness of interplanetary shocks controlled by impact angles: A review, Adv. Space Res., 61, 1–44, https://doi.org/10.1016/J.ASR.2017.10.006, 2018.
Papitashvili, N. E. and King, J. H.: OMNI 1-min Data, NASA Space Physics Data Facility [data set], https://doi.org/10.48322/45bb-8792, 2020.
Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T., and Elphic, R. C.: Plasma acceleration at the Earth's magnetopause: evidence for reconnection, Nature, 282, 243–246, https://doi.org/10.1038/282243a0, 1979.
Pitout, F., Astafyeva, E., Fleury, R., Maletckii, B., and He, J.: Did a minor geomagnetic storm really causethe loss of 40 Starlink satellites?, in: Proceedings of Soc. Fran. D'Astrophys. (SF2A), Besançon, France, 7–10 June 2022, edited by: Richard, J., Siebert, A., Lagadec, E., Lagarde, N., Venot, O., Malzac, J., Marquette, J.-B., N'Diaye, M., and Briot, D., Société Française d’Astronomie et d’Astrophysique – SF2A, Paris, France, https://sf2a.eu/proceedings/2022/2022sf2a.conf.185P.pdf (last access: March 2024), 2022.
Russell, C. and Elphic, R.: Observation of magnetic flux ropes in the Venus ionosphere, Nature, 279, 616–618, https://doi.org/10.1038/279616a0, 1979.
Sharma, R. and Srivastava, N.: Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft, J. Space Weather Spac., 2, A10, https://doi.org/10.1051/swsc/2012010, 2012.
SpaceX: Geomagnetic storm and recently deployed Starlink satellites, SpaceX website, published on 9 February 2022, https://www.spacex.com/updates/ (last access: 20 March 2024), 2022.
Swarm: The Earth’s magnetic field and environment explorers, ESA report for mission selection (SP1279/6), April 2004, https://www.esa.int/esapub/sp/sp1279/sp1279_6_SWARM.pdf (last access: October 2023), 2004.
Swarm: Swarm Data Access, [data set], European Space Agency (ESA), https://swarm-diss.eo.esa.int (last access: 20 March 2024), 2022.
Takeuchi, T., Araki, T., Viljanen, A., and Watermann, J.: Geomagnetic negative sudden impulses: Interplanetary causes and polarization distribution, J. Geophys. Res., 107, 1096, https://doi.org/10.1029/2001JA900152, 2002.
Tang, F., Tsurutani, B. T., Gonzalez, W. D., Akasofu, S. I., and Smith. E. J.: Solar Sources of Interplanetary Southward Bz Events Responsible for Major Magnetic Storms (1978–1979), J. Geophys. Res., 94, 3535–3541, 1989.
Tsurutani, B. T. and Lakhina, G. S.: An extreme coronal mass ejection and consequences for the magnetosphere and Earth, Geophys. Res. Lett., 41, 287–292, https://doi.org/10.1002/2013GL058825, 2014.
Tsurutani, B. T. and Meng, C.-I.: Interplanetary magnetic-field variations and substorm activity, J. Geophys. Res., 77, 2964, https://doi.org/10.1029/JA077i016p02964, 1972.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., and Smith, E. J.: Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988.
Tsurutani, B. T., Mannucci, A. J., Iijima, B., Abdu, M. A., Sobral, J. H. A., Gonzalez, W. D., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B., Fuller-Rowell, T. J., Kozyra, J., Foster, J. C., Coster, A., and Vasyliunas, V. M.: Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, https://doi.org/10.1029/2003JA010342, 2004.
Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Araki, T., Sato, A., Tsuda, T., and Yumoto, K.: Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event, Ann. Geophys., 25, 569–574, https://doi.org/10.5194/angeo-25-569-2007, 2007.
Tsurutani, B. T., Green, J., and Hajra, R.: The Possible Cause of the 40 SpaceX Starlink Satellite Losses in February 2022: Prompt Penetrating Electric Fields and the Dayside Equatorial and Midlatitude Ionospheric Convective Uplift, arXiv [physics.space-ph], arXiv:2210.07902, https://doi.org/10.48550/arXiv.2210.07902, 2022.
von Humboldt, A.: Die vollständigste aller bisherigen Beobachtungen über den Einfluss des Nordlichts auf die Magnetnadel angestellt, AnPh, 29, 425, https://doi.org/10.1002/andp.18080290806, 1808.
Walach, M.-T. and Grocott, A.: SuperDARN Observations During Geomagnetic Storms, Geomagnetically Active Times and Enhanced Solar Wind Driving, J. Geophys. Res.-Space, 124, 5828–5847, https://doi.org/10.1029/2019JA026816, 2019.
Wang, J., Feng, H. Q., and Zhao, G.: Cold prominence materials detected within magnetic clouds during 1998–2007, Astron. Astrophys., 616, A41, https://doi.org/10.1051/0004-6361/201731807, 2018.
Wikipedia contributors: List of Starlink and Starshield launches, Wikipedia: The Free Encyclopedia, Data accessed on 28 October 2022, https://en.wikipedia.org/w/index.php?title=List_of_Starlink_and_Starshield_launches&oldid=1148257453 (last access: 20 March 2024), 2022.
World Data Center for Geomagnetism: Geomagnetic Data Service, World Data Center for Geomagnetism, Kyoto [data set], https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html, last access: 28 October 2022.
Yashiro, S., Gopalswamy, N., Mäkelä, P., and Akiyama, S.: Post-Eruption Arcades and Interplanetary Coronal Mass Ejections, Sol. Phys., 284, 5–15, 2013.
Short summary
On February 03 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites into orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm that was followed by a second storm. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory or modeling) or a high level of satellite collisions.
On February 03 2022, SpaceX launched a new group of satellites for its Starlink constellation....