Articles | Volume 32, issue 4
https://doi.org/10.5194/npg-32-439-2025
https://doi.org/10.5194/npg-32-439-2025
Research article
 | 
24 Oct 2025
Research article |  | 24 Oct 2025

Exploring the influence of spatio-temporal scale differences in coupled data assimilation

Lilian Garcia-Oliva, Alberto Carrassi, and François Counillon

Related authors

An ensemble-based coupled reanalysis of the climate from 1860 to the present (CoRea1860+)
Yiguo Wang, François Counillon, Lea Svendsen, Ping-Gin Chiu, Noel Keenlyside, Patrick Laloyaux, Mariko Koseki, and Eric de Boisseson
Earth Syst. Sci. Data, 17, 4185–4211, https://doi.org/10.5194/essd-17-4185-2025,https://doi.org/10.5194/essd-17-4185-2025, 2025
Short summary
Hybrid machine learning data assimilation for marine biogeochemistry
Ieuan Higgs, Ross Bannister, Jozef Skákala, Alberto Carrassi, and Stefano Ciavatta
EGUsphere, https://doi.org/10.48550/arXiv.2504.05218,https://doi.org/10.48550/arXiv.2504.05218, 2025
Short summary
Enhancing sea ice knowledge through assimilation of sea ice thickness from ENVISAT and CS2SMOS
Nicholas Williams, Yiguo Wang, and François Counillon
EGUsphere, https://doi.org/10.5194/egusphere-2025-104,https://doi.org/10.5194/egusphere-2025-104, 2025
Short summary
Data-driven emulation of melt ponds on Arctic sea ice
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476,https://doi.org/10.5194/egusphere-2024-2476, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary

Cited articles

Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. a
Arnold, C. P. and Dey, C. H.: Observing-Systems Simulation Experiments: Past, Present, and Future, B. Am. Meteorol. Soc., 67, 687–695, https://doi.org/10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2, 1986. a
Ayers, D., Lau, J., Amezcua, J., Carrassi, A., and Ojha, V.: Supervised machine learning to estimate instabilities in chaotic systems: Estimation of local Lyapunov exponents, Q. J. Roy. Meteorol. Soc., 149, 1236–1262, https://doi.org/10.1002/QJ.4450, 2023. a
Balmaseda, M., Alves, O., Arribas, A., Awaji, T., Behringer, D., Ferry, N., Fujii, Y., Lee, T., Rienecker, M., Rosati, T., and Stammer, D.: Ocean Initialization for Seasonal Forecasts, Oceanography, 22, 154–159, 2009. a, b
Barthelemy, S., Counillon, F., and Wang, Y.: Adaptive covariance hybridization for the assimilation of SST observations within a coupled Earth system reanalysis, Journal of Advances in Modeling Earth Systems, 16, https://doi.org/10.1029/2023MS003888, 2024. a
Download
Short summary
We used a simple coupled model and a data assimilation method to find the correct initialisation for climate predictions. We aim to clarify when weakly or strongly coupled data assimilation (WCDA or SCDA) is best, depending on the system's dynamical characteristics (spatio-temporal) and data coverage. We found that WCDA is better in full data coverage. When we have a partially observed system, SCDA is better. This result depends on the temporal and spatial scale of the observed quantity.
Share