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Abstract. Identifying the optimal strategy for initializing coupled climate prediction systems is challenging
due to the spatio-temporal scale separation and disparities in the observational network. We aim to clarify when
strongly coupled data assimilation (SCDA) is preferable to weakly coupled data assimilation (WCDA). We
use a two-components coupled Lorenz-63 system, mimicking the atmosphere and the ocean, and the Ensemble
Kalman Filter (EnKF) to compare WCDA and SCDA for diverse spatio-temporal scale separations and observa-
tional networks – only in the atmosphere, the ocean, or both components. In the fully observed scenario, SCDA
and WCDA yield similar performances. However, little differences are present, and we conjecture these are due
to the SCDA being more sensitive to the approximations at the basis of the EnKF present in the cross-update –
linear analysis update and sampling error, and how they impact the cross-update between ocean and atmosphere.
This sensitivity increases as the temporal scale separation increases and is stronger on the slow and large-scale
components. When observations are only in one of the components, the spatio-temporal scale separation influ-
ences SCDA’s performance. In this scenario, the largest improvements are found when the observed component
has a smaller spatial scale. The fast-to-slow update has a larger benefit with a larger temporal scale separation.
Meanwhile, with the slow-to-fast update, the improvement is limited to instances when the temporal scale sepa-
ration is less than one-half. This suggests that SCDA of fast atmospheric observations can potentially improve the
large and slow ocean component. Conversely, observations of the fine ocean can improve the large atmosphere at
a comparable temporal scale. However, when both components are highly chaotic, and the observed component’s
spatial scale is the largest, SCDA does not improve over WCDA. In such a case, the cross-updates may become
too sensitive to data assimilation approximations. We further validated that WCDA systematically outperforms
uncoupled data assimilation (UCDA) in both components, legitimizing the transition toward WCDA.

1 Introduction

Environmental and climate prediction systems nowadays are
transitioning toward the use of coupled models – from nu-
merical weather prediction (NWP) to seasonal-to-decadal
(S2D) climate predictions – with a target to build seam-
less forecasting systems that can perform across various
timescales (Shukla, 2009). In general, coupled prediction
systems to date assimilate data independently in each of the

different sub-components (Meehl et al., 2021); for example,
atmospheric observations are used to infer the state of the
atmosphere, ocean observations are used for the ocean, and
so on. However, this technologically convenient strategy re-
sults in the suboptimal use of observations across the differ-
ent components and can degrade the dynamical consistency
of the system and generate spurious drifts (Penny and Hamill,
2017). A key challenge of assimilating observations across

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



440 L. Garcia-Oliva et al.: Exploring the influence of spatio-temporal scale differences in coupled data assimilation

components is the spatio-temporal scale separation of the cli-
mate system.

The climate system features a wide range of temporal and
spatial scales that go beyond the stereotypical association of
fast and large for the atmosphere and slow and small for
the ocean. For instance, the time and spatial scale of the
ocean and the atmosphere are of the same order in the equa-
torial Pacific, dominated by the El Niño-Southern Oscilla-
tion (ENSO). In the North Atlantic, the fast North Atlantic
Oscillation (NAO) strongly influences the slower and larger
Atlantic meridional overturning circulation and the Atlantic
multidecadal variability (Clement et al., 2015), but with evi-
dence of a feedback mechanism of the slow ocean variability
to NAO (Zhang et al., 2019). Quite similarly, in the Pacific,
the fast and local Aleutian Low variability is a primary driver
of the variability of the Pacific decadal variability (PDV, be-
ing slow and large-scale). The Aleutian Low is influenced
by both the local wind variability and ENSO, and a feed-
back mechanism of the PDV on the Aleutian Low has been
proposed via Rossby waves influencing the position of the
Kuroshio (i.e., small-scale ocean front Newman et al., 2016).

Data assimilation (DA) methods estimate the state of a dy-
namical system based on observations, a dynamical model,
and statistical information on the error terms (Carrassi et al.,
2018). Traditionally, NWP and S2D predictions are initial-
ized using uncoupled DA (UCDA). UCDA consists in the
realization of independent data assimilation cycles on each
of the relevant components of a coupled model (Meehl et al.,
2021). However, when applying UCDA to coupled models,
it often results in imbalances between the ocean and atmo-
sphere states, which causes initialization shock and reduces
prediction skill (Balmaseda et al., 2009; Zhang et al., 2020).
To alleviate such limitations, coupled DA (CDA) is produced
with fully coupled models and aims at providing balanced
and self-consistent states within the coupled model (Zhang
et al., 2020). CDA is executed in either weakly or strongly
coupled fashion (with acronyms WDCA and SCDA, respec-
tively; Laloyaux et al., 2016). In WCDA, the assimilation is
applied to the individual components separately by using the
observations available for that component. Notably, the ob-
servations can still impact across components via the dynam-
ical coupling between the assimilation cycle, unlike with un-
coupled data assimilation (i.e., performed with an uncoupled
model). On the other hand, in SDCA, the observations from
one component impact the other components directly during
the assimilation. SCDA is, in principle, the best approach for
CDA since the statistical and dynamical assimilation of ob-
servations through the coupled cross-covariance potentially
provides more information and produces better and more dy-
namically balanced analysis (Penny and Hamill, 2017).

Comparison of SCDA and WCDA has been studied with
dynamical systems of increasing complexity (Liu et al.,
2013; Sluka et al., 2016; Penny et al., 2019; Tondeur et al.,
2020; Kurosawa et al., 2023). While SCDA gives some clear
improvements over WCDA in some locations, configurations

(e.g., observational network, toy models) and selected pro-
cesses (Sandery et al., 2020; Kalnay et al., 2023; Sun et al.,
2020) degradations are also found. Such degradations have
been attributed to the interconnection of processes with dis-
parate spatio-temporal scales in the climate system, approx-
imations in DA, and model error. For instance, model error
and limited ensemble sizes can hinder the accurate estimation
of the system’s coupled cross-correlation (Han et al., 2013;
Tardif et al., 2014; Lu et al., 2015a). Furthermore, SCDA
improves results if observations are only found in one com-
ponent (Sluka et al., 2016), but conclusions are often not as
clear when both components are partially observed (Sluka,
2018). This typically motivates the use of ad-hoc methods
such as cross-component localization (Frolov et al., 2016;
Stanley et al., 2024), or the use of time average covariance,
like the Leading Average Coupled Covariance (Lu et al.,
2015a, b; Sun et al., 2020, LACC method) to circumvent
these limitations.

Our study’s main motivation is to explore potential con-
nections between the coupled model’s dynamical properties
and the performance of uncoupled and coupled DA methods,
and how the latter interplay with the spatio-temporal scale
separation among the model’s components. We aim to clar-
ify which dynamical conditions and observational scenario
favour one CDA approach over the other, attempting to dis-
cern the key model and observation features driving the re-
sults. We use a low-order coupled system and extensively
compare the different approaches for a wide range of tem-
poral and spatial scales and observation configurations. This
can help us to verify when CDA – particularly WCDA – is
expected to outperform UCDA, and further anticipate when
SCDA is expected to outperform WCDA in an operational
configuration, thus legitimizing the allocation of resources to
migrate from UCDA to WCDA, or all the way to SCDA.

The paper is structured as follows. In Sect. 2, we de-
scribe the coupled model used in this paper. We identify
how the combination of spatio-temporal scale differences be-
tween the model’s components impacts the sensitivity to ini-
tial conditions and the general characteristics of the system.
In Sect. 3, we describe the experimental setup, the metrics
used, and the set of DA experiments performed. The results
of our experiments are presented and discussed in Sect. 4. We
close this paper with our concluding remarks and outlook in
Sect. 5.

2 Lorenz multiscale coupled system

We use two coupled Lorenz models (Lorenz, 1963, L63),
as introduced by Peña and Kalnay (2004), as a proxy of
real complex coupled multiscale dynamical systems (e.g.,
atmosphere-ocean). The system consists of a fast and a slow
component, with the following equations:
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Table 1. Set of parameters for the coupled L63, Eq. (1).

σ b r c S τ k

10.0 8/3 28 0.15 1.0 0.1 10.0

ẋ = σ (y− x)− c(SX+ k)

ẏ = rx− y− xz+ c(SY + k)
ż= xy− bz

Ẋ = τσ (Y −X)− c(x+ k)
Ẏ = τrX− τY − τSXZ+ c(y+ k)
Ż = τSXY − τbZ. (1)

The low-case variables (x, y, z) indicate the fast component
(considered in the following to be our atmosphere), while the
capital variables (X, Y , Z) indicate the slow component (in
the following to be the ocean); and ẋ indicates the deriva-
tive of x with respect to time. The parameters σ , b, and r
(Table 1) are set to the default values of the L63 (Lorenz,
1963). The coupling strength is modulated by the parameter
c, here set to the value c = 0.15. The coupling occurs only
through the (x,y)↔ (X,Y ) components. The parameters S
and τ control the components’ spatial and temporal scale
differences. In Peña and Kalnay (2004), S = 1. and τ = 0.1,
meaning that both components have approximately the same
spatial scale, but the slow component is ten times slower. The
effective spatial scale difference also depends on the values
of the other parameters (even from the nonlinear interactions
coming from the model) but is predominantly sensitive to
S (Sect. 2.1). Finally, k = 10 is the uncentering parameter
that shifts the phase of each component during the coupling.
Since the coupling is relatively weak, the “slow→ fast” in-
formation is rapidly dissipated, while the “fast→ slow” in-
teraction introduces a “weather noise”-like signal to the slow
component (Peña and Kalnay, 2004). With these parame-
ter values, the system mimics a weak extratropical ocean-
atmosphere coupling.

We integrate the system using the fourth-order Runge-
Kutta numerical scheme, using an adimensional time
step dt of 10−2 TU (time units) and initial condition
xT

0 = (x0,y0,z0,X0,Y0,Z0)T
= (0.,1.,0.,0.,0.,0.)T. We in-

tegrated the system over 1500 TU and discarded the initial
transient period of approximately 40 TU for our following
analyses. Figures 1 and 2 show the time series and a 2-
dimensional projection of the system’s attractor using the
default parameters as in Peña and Kalnay (2004) (Table 1).
Figure 1 shows the time scale difference between the fast and
slow components while they have similar amplitude. Figure 2
displays the projections on the (x, z) and (X, Z) planes of
the system’s attractor: the atmospheric and ocean portions of
the attractor share the same topological shape, but the atmo-
sphere has a much higher frequency.

We commence our analysis by exploring the impact of S
and τ , the parameters controlling the amplitude and time-
scale mismatch between atmosphere and ocean, on the phys-
ical and dynamical properties of the system. In particular, we
focus on (1) the energy partition between components, the
effective temporal separation, and the instantaneous cross-
component covariance (Sect. 2.1); (2) the error propagation
by computing the spectrum of Lyapunov exponents (LEs),
the Kolmogorov entropy (KE), the Kaplan–Yorke attrac-
tor dimension (KY-dim), and the flow’s divergence (∇ ·f )
(Sect. 2.2); and (3) the error propagation across components
(Sect. 2.3).

2.1 Parameters influence on energy, time-scale
separation and cross covariance

To understand how the effective difference in temporal (or
spatial) scales between the components is determined by S
and τ , we compute the energy Ea/Eo and period Ta/To ratio
with varying values of S and τ . The sub-index “a” denotes
the atmosphere and “o” the ocean components.

We use energy E to estimate each component’s spatial
scale. The energy E of the two components (Eo for X, Y ,
Z and Ea for x, y, z) of the coupled system are computed as
follows:

E =

N∑
n=1

x2
n +

N∑
n=1

y2
n +

N∑
n=1

z2
n (2)

whereN is integration length, and xn, yn, and zn are the com-
ponent’s variables at time n.

We estimate the component’s period T , i.e. the dominant
time scale, as the period at which the power spectrum density
(PSD) reaches its maximum. To estimate the PSD, we use the
component’s magnitude m:

m=‖ x ‖=
(
|x|2+ |y|2+ |z|2

)1/2
. (3)

The sensitivity of energy Ea/Eo and period Ta/To ratios
to S and τ is explored in Fig. 3. The relative energy con-
tent of each component (Fig. 3a) shows that the energy of the
ocean (Eo), and hence the spatial scale separation, is mostly
inversely proportional to S and that the temporal scale has
only a little influence on it. Therefore, the ocean’s spatial
scale increases as S > 1. As it could have been anticipated,
the temporal separation is uniquely sensitive to τ . Figure 3
demonstrates that one can change these two parameters sep-
arately to modulate the spatial or temporal scale differences
accordingly.

We analyze the dependence of information transfer be-
tween components on the spatio-temporal parameters by
computing the cross-component instantaneous correlation of
the coupled system C over 500 TU for all (S, τ ) configu-
rations and calculate the spectral norm of it (Fig. 4). We
consider the sub-matrix Ccc

= cij , where i = 1, 2, 3 and
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Figure 1. Time series of the atmospheric (left) and ocean (right) variables. The model uses here the configuration on Table 1, of the
extratropical atmosphere-ocean system.

Figure 2. Standard configuration attractors of the extratropical
atmosphere-ocean system during the 700–750 TU.

j = 4, 5, 6. The spectral norm of a matrix A is computed
as follows:

‖ A‖2 = ρ
(
A∗A

)1/2
, (4)

where ρ(A∗A)= max
1≤i≤n

|λi | is the spectral radius of A, the

maximum modulus of the n eigenvalues λi of A; and A∗
is the conjugate of A. Since the correlation matrix C ∈ Rn×n
then C∗ = CT.

The pattern in Fig. 4 reveals that the information flow
across the system’s components is heavily influenced by S
and τ . The cross-component correlation decreases as the spa-
tial scale difference increases. However, and somehow un-
expected, the cross-component correlation increases as the
time scale difference increases. The cross-covariance shows
a maximum when the ocean component (X, Y , Z) has a
smaller spatial scale and slower time scale than the atmo-
spheric component (x, y, z), implying a high information
flow. Conversely, a large and fast ocean hampers the flow of
information. These findings align with those found by Ton-
deur et al. (2020) in relation to time-scale difference only.

2.2 Influence of the spatio-temporal scale mismatch on
the chaotic behaviour of the coupled system

Here, we assess how the spatio-temporal parameters influ-
ence the chaoticity of the coupled system. We quantify the

sensitivity of the system to initial conditions by exploring its
Lyapunov spectrum. We use the Benettin algorithm (Benet-
tin et al., 1980), as described by Ayers et al. (2023), to com-
pute the Lyapunov exponents (LEs) and the first backward
Lyapunov vector (LV1). The computation of LEs and LV1
is performed over an integration of 1× 104 TU, thus ensur-
ing convergence of the method. To understand the effect of
the coupling on the dynamics of the coupled system, we first
compare the coupled L63 system (Eq. 1) to two uncoupled
L63 systems (Eq. 5 Lorenz, 1963).

ẋ = τσ (y− x)

ẏ = τ (rx− y− Sxz)
ż= τ (Sxy− bz). (5)

For the uncoupled atmosphere, we set (S = 10., τ = 1.0),
for the ocean (S = 1.0, τ = 0.1), and compare them with the
coupled system (Eq. 1) with the parameterization in Table 1.
Figure 5 shows the Lyapunov spectrum of the uncoupled sub-
components (atmosphere in red; ocean in green) and the cou-
pled system (blue). Both uncoupled systems possess one pos-
itive (λ+i ), one negative (λ−i ), and one neutral (λ0

i ) LE. How-
ever, while the LEs of the atmosphere are substantially dif-
ferent, in the ocean, they are much closer to each other. The
ocean appears only very marginally unstable, with the largest
LE just above zero. Thus, the uncoupled-unforced ocean is
nearly stable. This is also confirmed by the Kolmogorov-
Sinai entropy and the divergence (KS-E and ∇ ·f , respec-
tively, in Table 2), which are around one order of magnitude
smaller than for the atmosphere. Notably, although the ocean
is much stabler than the atmosphere, their attractors’ dimen-
sions (measured by the Kaplan–York dimension KY-dim, in
Table 2) are the same.

The Lyapunov spectrum of the coupled system is a mix
of the uncoupled atmosphere and ocean spectra (Fig. 5). The
coupling does not affect the number of positive Lyapunov ex-
ponents, which remains one. Instead, it introduces two near-
neutral exponents while retaining the two negative exponents
from each uncoupled system. The presence of these addi-
tional exponents with values close to zero is commonly re-
ferred to as quasi-degeneracy. The emergence of these quasi-
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Figure 3. Dependence of the (a) energy ratio Ea/Eo and (b) period ratio Ta/To on S and τ with a logarithmic colourbar. Note that the
ocean’s spatial scale S (y-axis) increases upward.

Table 2. Stability analysis of the coupled and uncoupled system.

Atm Ocn Coupled system

KY-dim 2.062 2.061 4.646
KS-E 0.904 0.089 0.898
∇ ·f −13.667 −1.367 −15.033

λ+
i

0.906 0.094 0.885

λ0
i

0.002 −0.002 0.029
0.0003
−0.022

λ−
i

−14.57 −1.457 −1.373
−14.55

neutral modes has been found to be related to the coupling
itself (Penny et al., 2019; Tondeur et al., 2020) in models of
higher complexity, such as MAOOAM (Cruz et al., 2016).
Moreover, their presence has tremendous implications when
designing efficient DA methods to control error growth (Car-
rassi et al., 2022).

We now investigate in Fig. 6 how the chaotic behavior of
the coupled system changes with (τ , S) parameters. From
the system’s Jacobian (Eq. 7), we can already anticipate that
τ will play a larger role in modulating the system’s degree
of chaos than S. However, since S appears in the cross-
component terms (from the ocean to the atmosphere, Eq. 7),

it can potentially influence the dynamical properties of the
system, regardless of the coupling parameter c (Sect. 2.3).

Changing either τ or S does not alter the shape of the Lya-
punov spectrum – i.e., the number of positive, near-neutral,
neutral, and negative LEs (not shown). However, changing
τ impacts the degree of chaos of the system and the attrac-
tor’s dimension (KS-E, KY-dim and ∇ ·f in Fig. 6), inde-
pendently of the value of S. As the time scale separation
decreases (τ → 1), the system becomes more unstable, and
the dimension of the attractor decreases. However, when τ
gets too large, the KY-dim saturates at 4. Since the KY-dim
approaches the phase space dimension (n= 6), the entropy
decreases (near zero values), and the divergence increases;
we have that the dynamics become similar to a Hamiltonian
system (it approximates a conservative system) as the ocean
becomes slower and that the error will evolve along the com-
plete phase space.

We finally analyze how the projection of LV1 on the state
vector varies with the spatio-temporal parameters, which
helps to understand or discriminate the source of instabili-
ties in the state vector. To this end, we show the ratio be-
tween the projection on the atmosphere (LV1a) and that of
the ocean (LV1o) component in Fig. 7. The LV1 projec-
tion on the atmospheric variables is generally larger, imply-
ing that the dominant source of error propagation relies on
the atmosphere. This behaviour is independent of the spatial
scale of the ocean (S) as long as the parameter τ is less than
one (ocean slower than the atmosphere). When both compo-
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Figure 4. Instantaneous cross-covariance spectral norm ||Ccc
||2

for each (S, τ ) combination. The value presented is the average of
25 runs using different initial conditions. Colourbar is in logarith-
mic scale.

nents have the same time scale (τ = 1), the LV1 projection is
larger in the component with the largest spatial scale, i.e., the
projection on the ocean component decreases when S > 1.
When τ > 0.25, the error propagation is relatively even on
both components. However, when τ < 0.25, the error propa-
gation towards the ocean is almost two orders of magnitude
smaller than towards the atmosphere.

2.3 Error propagation across model’s components

In this section, we use the (linearised) dynamical arguments
from Tondeur et al. (2020) to investigate the error propaga-
tion from one component to the other, and how it depends on
the spatio-temporal scale separation parameters S and τ . In
this context the evolution of a perturbation ξ (t) in the system
is governed by the tangent linear system:

ξ̇ (t)= Jξ (t) (6)

where J is the Jacobian of such system. For our coupled sys-
tem, in Eq. (1), the Jacobian reads:

Figure 5. Lyapunov exponents (LEs) for the uncoupled atmosphere
(L63) in red (S = 1, τ = 1), in green the uncoupled ocean (L63-
like, with S = 1, τ = 0.1) and in blue the coupled system (S = 1,
τ = 0.1).

J=


−σ σ 0 −cS 0 0
r − z −1 −x 0 cS 0
y x −b 0 0 0
−c 0 0 −τσ τσ 0
0 c 0 τ (r − SZ) −τ −τSX

0 0 0 τSY τSX −τb

 . (7)

Let write our coupled system in Eq. (1) in the following
general form:

ẋ= f (x,X),

Ẋ= τg(x,X), (8)

where x and X indicate the atmosphere and ocean state re-
spectively, and τ is the time scale. Therefore, over the inter-
val dt , the forecast error in the atmosphere ζ (t) and in the
ocean η(t) evolve according to:[
ζ̇ (t)
η̇(t)

]
=

[
Fa Fo
τGa τGo

][
ζ (t)
η(t)

]
. (9)

After re-arranging the terms in Eq. (7), we can identify the
form of the cross-component error propagation terms, Fo and
Ga as:

Fo =
∂f

∂X
=

−cS 0 0
0 cS 0
0 0 0

 (10)

and

Ga =
∂g

∂x
=

−c/τ 0 0
0 c/τ 0
0 0 0

 . (11)

In these expressions, Fo represents the ocean→ atmosphere,
while Ga the atmosphere→ ocean propagation of error. We
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Figure 6. Stability analysis of the coupled system in dependence of the spatio-temporal parameters S and τ (a) Kolmogorov–Sinai entropy
KS-E, (b) Kaplan–York dimension KY-dim, and (c) divergence of the flow ∇ ·f . Note that each quantity has its own limits, and the colourbar
is on a linear scale.

Figure 7. Ratio of the normalized LV1 over atmosphere and ocean.
Note that the colourbar is on a logarithmic scale.

can see that Fo depends explicitly on the spatial parameter S.
Thus, the error propagation from the slow (ocean) to the fast
(atmosphere) component depends exclusively on S and in-
creases as S does. On the other hand, Ga depends only on the
temporal scale τ , and it is inversely proportional to it. There-
fore, the error propagation from the fast to slow components
increases as the parameter τ decreases. Using this informa-
tion, we can plot the competing direction of error propaga-
tion, which we can take as the ratio of the norm of Ga and Fo.
For this, we use the Frobenius norm, defined for a matrix A
as ‖ A ‖= [tr(A∗A)]1/2. Thus, the competing direction of er-
ror porpagation is ‖Ga ‖‖ Fo‖

−1
= (Sτ )−1; we illustrate this

dependence in Fig. 8.
Figure 8 elucidates the role of S and τ on the error

propagation across components. The figure has three sepa-
rate regions, in which ‖Ga ‖>‖ Fo ‖, ‖Ga ‖≈‖ Fo ‖, and ‖
Ga ‖<‖ Fo ‖. Thus, when the temporal scale separation van-
ishes and the ocean’s spatial scale increases (τ−1 > S), the
error propagation is dominated by the atmosphere→ ocean
term Ga (blue region in Fig. 8). In the opposite case, when
the temporal scale separation increases and the ocean’s spa-
tial scale decreases (τ−1 < S), the error mostly propagates
from the ocean→ atmosphere term Fo (red region in Fig. 8).

3 Data assimilation experiments

3.1 Experimental setup

We conduct a set of coupled and uncoupled DA experiments
using the coupled L63 in Eq. (1), and the uncoupled L63-
like system in Eq. (5), respectively, for different values of
the parameters S and τ to reflect spatio-temporal separations

https://doi.org/10.5194/npg-32-439-2025 Nonlin. Processes Geophys., 32, 439–456, 2025
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Figure 8. Competing direction of error propagation ‖Ga ‖‖ Fo‖
−1

as function of the spatio-temporal scale separation (S, τ ). The blue
region indicates cases where the impact of atmosphere→ ocean is
larger. The red region is where the ocean→ atmosphere error prop-
agation is dominant. Note that the colourbar is in logarithmic scale
and is centred around 1.

between the two components of the system. We used the
stochastic Ensemble Kalman Filter (EnKF Evensen, 2003)
and compared weakly and strongly coupled data assimila-
tion (WCDA and SCDA, respectively). The additional ex-
periment using UCDA is contrasted against WCDA.

We use an idealized perfect twin experiment framework
(Arnold and Dey, 1986), i.e., the model used for generating
synthetic observations is the same as that used for DA. The
synthetic observations are generated by adding zero-mean
Gaussian noise to a reference simulation (hereafter referred
to as True). Here, we only observed (y, Y ) variables. This
choice follows what was done by, e.g., Yoshida and Kalnay
(2018) and Quinn et al. (2020) that showed these two vari-
ables to be more informative in the Lorenz model (Yang
et al., 2006). Similar performances were found when observ-
ing the full system (not shown).

The observation error standard deviation σ is equal to
2.5 % of the system’s natural variability (i.e., the time-wise
standard deviation of each model variable). This implies that
the observation error covariance matrix R depends on the
spatio-temporal scales of each component (see Sect. 2.1).
The observational error is uncorrelated; therefore, R is diag-
onal with the observational error variance along the diagonal.

The DA is performed using an observational interval equal
to one-fifth of the error-doubling time of an uncoupled L63
system (see Sect. 3.4 for further details for this choice).
To prevent filter divergence, we used an adaptive inflation
scheme (Sect. 3.3) and 20 ensemble members. We run the
model for 850 TU, allowing for 150 TU for spin-up before
the start of the DA. We use such a long spin-up time to al-
low all the system’s (S, τ ) combinations to evolve beyond
the transient period (especially for the cases with a very slow
ocean). The error statistics (Sect. 3.5) are computed over the
last 600 TU in a similar way to the experiments of Yoshida
and Kalnay (2018) and Quinn et al. (2020). We also repeat
the DA experiments 30 times with different initial conditions
xT

0 and different observation perturbations to assess the sys-
tem’s performance robustly.

3.2 Data assimilation with the Ensemble Kalman Filter
EnKF

The Ensemble Kalman Filter (EnKF, Evensen, 2003) is a
Monte Carlo-like sequential DA methodology consisting of a
forecast step alternated with an update phase (analysis). Dur-
ing the first phase, the ensemble of states (the ensemble) is
integrated forward in time (forecast) from the previous en-
semble of analysis states. During the second phase, observa-
tions are used to update (analyze) the ensemble for the next
iteration. The method uses ensemble covariance to provide
flow-dependent correction and performs a linear analysis up-
date.

We denote the ensemble forecast Xf
∈ Rn×N . The super-

script “f” stands for forecast, N is the ensemble size, and
n is the dimension of the state. The model error is assumed
to follow a Gaussian distribution with zero mean. The en-
semble mean is denoted xf and the ensemble anomalies are
Af
= Xf
−xf1T, where 1 ∈ RN×1 has all its values equal to 1.

Under the aforementioned hypothesis, the ensemble covari-
ance Pf is an approximation of the true forecast error, ε, co-
variance matrix:

εεT ≈ Pf
= (N − 1)−1AfAfT . (12)

Furthermore, given y ∈ Rm×1 to be the observation vector
with m observations from which we can construct additional
N perturbed observations yi = y+ εoi , and the ensemble of
observations Yo ∈ Rm×N as:

Yo =
(
y1, y2, . . ., yN

)
(13)

with an associated ensemble of observation perturbations
0 ∈ Rm×N :

0 = (εo1, εo2, . . ., εoN ) (14)

from which we can construct the error covariance R:

R= (N − 1)−100T. (15)
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The analysis equation then becomes:

Xa
= Xf
+K

(
Yo−HXf

)
; (16)

where H is the (linear) observation operator which relates the
forecast model state variables to the measurements. Finally,
K is the Kalman gain:

K= PfHT
(

HPfHT
+R

)−1
. (17)

3.3 Covariance inflation

In ensemble methods, such as the EnKF, the analysis step
is based on a flow-dependent forecast error covariance Pf,
which is a finite-size ensemble approximation of the true
forecast error covariance (Evensen, 2003). This sampling er-
ror causes the matrix Pf to be usually an underestimation of
the actual covariance. Besides sampling error, other sources
of incorrect specifications include model error and nonlinear-
ities. All these factors may lead to filter divergence, whereby
the filter incorrectly trusts a “too small” Pf. Filter diver-
gence is usually handled using covariance inflation (Ander-
son, 2001; Li et al., 2009; Miyoshi, 2011; Kotsuki et al.,
2017; Raanes et al., 2019).

In this study, we use the adaptive covariance inflation
method proposed by Desroziers et al. (2006) and based on
the following relation:

〈ddT
〉 =HBHT

+R, (18)

where d = y−Hxf are the innovation vectors, R is the obser-
vation error covariance, HBHT is the true forecast covariance
matrix in observation space, and 〈·〉 denotes the expected
value. This relation holds if B and R are correctly known
(Desroziers et al., 2006). For an EnKF, we can approximate
Eq. (18) using the ensemble-based background covariance
matrix Pf and the inflation factor α, according to:

〈ddT
〉 = αHPfHT

+R. (19)

The inflation factor α is estimated by taking the trace Tr(·)
of Eq. (19):

α =
〈ddT
〉−Tr(R)

Tr
(
HPfHT

) . (20)

Since our experiment uses a small sample of observations
(i.e., two when the network includes both the ocean and at-
mosphere and only one when one component is observed),
the estimation of α can be plagued by noise, which is detri-
mental to the correct functioning of the filter (Li et al., 2009).
To mitigate the effect of the noise, we used a simple time
smoothing function for α′ formulated as follows:

α′t = (1− γ )αt + γαt−1. (21)

Thus, α′t is a linear combination of the previous inflation
factor αt−1 and the one at current time αt ; with γ being a
weighting parameter 0< γ ≤ 1, which we tune empirically
for the time scale separation τ of our system.

3.4 Assimilation window

We set the length of the ocean (resp. atmosphere) assimila-
tion cycle 1To (resp. 1Ta) as one-fifth of the error doubling
time:

1T =
1
5

ln(2)
λ1

(22)

with λ1 being the maximum Lyapunov exponent of the un-
coupled L63 system in Eq. (5). This choice reflects observa-
tional networks designed or optimized to counteract effec-
tively the error growth (Peña and Kalnay, 2004). Further-
more, and importantly for our goals here, this choice allows
us to compare different DA experiments, with varying S and
τ , but keeping the observational constraint at a comparable
strength.

As shown in Sect. 2.1, the characteristic time scale of the
system is largely modulated by τ and, to a lesser extent, by
S but not by the coupling terms. We therefore decide to de-
termine 1To(a) as a function of τ only; results are shown in
Fig. 9. This relation is exponential, which is expected from
Eq. (5) in which τ is a factor multiplying all variables of the
L63 system. Thus, we use a constant 1Ta = 15dt for the at-
mospheric component, as τ = 1 in all experiments (blue dot
in Fig. 9). On the other hand, the assimilation cycle of the
ocean 1To will change with the ocean temporal scale (red
line in Fig. 9).

3.5 Evaluation metrics

We assessed the accuracy of each DA approach by computing
the root-mean-squared error RMSE of the ensemble mean
analysis state, averaged over the 30 different experiments, as
follows:

RMSE=
1
Ne

Ne∑
j=1

(
1

Nt − 1

Nt∑
i=1

(
xa
ij − x

t
i

)2
)1/2

, (23)

where xa
i is ensemble mean of analysis state, xt

i is the truth
at analysis step i, and Nt is the integration length. The j in-
dices denote the experiment number performed with a dif-
ferent random seed (here Ne = 30, see Sect. 3). In particular,
we adopt the 1RMSEn metric, which uses the WCDA ex-
periment as a benchmark and normalizes the error by that of
the FREE run (experiment with no assimilation), calculated
as follows:

1RMSESC
n =

RMSESCDA
−RMSEWCDA

RMSEFREE . (24)
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Figure 9. Ocean assimilation cycle 1To (red) as a function of temporal scale τ . The atmosphere assimilation cycle 1Ta is marked with the
blue circle. Note that the left y-axis shows the assimilation cycle in time units TU, while the right y-axis shows the number of time steps dt .

Values of 1RMSESC
n < 0 indicate a reduction of error

compared to WCDA, values close to zero indicate no dif-
ference. Values 1RMSESC

n > 0 indicate a degradation. We
present the results as the mean of 1RMSESC

n over each
component. Hence, we present the average error reduction
1RMSE

SC
n in the full atmosphere and ocean.

For the comparison between UCDA and WCDA, we use
the metric1RMSEUC

n , defined similarly to Eq. (24), but now
evaluating the UCDA experiment, thus:

1RMSEUC
n =

RMSEUCDA
−RMSEWCDA

RMSEFREE . (25)

In this comparison, the RMSE for UCDA is computed us-
ing the truth and FREE run calculated using the coupled L63
system in Eq. (1). The metric 1RMSEUC

n assesses the capa-
bility of UCDA to reconstruct the variability of one of the
components of a coupled system, using its uncoupled ver-
sion.

4 Results

We compare WCDA and SCDA in a set of numerical
experiments grouped based on the observational network.
Specifically, we shall have experiments with observations in
both (i) the atmosphere and ocean (named FULL hereafter),
(ii) the atmosphere (ATM), and (iii) the ocean (OCN) – see
Sect. 3 for a detailed description of the experimental design.
We also show the comparison between UCDA and WCDA
under the FULL observation network. This is, we compare

both methodologies under a well-observed system – i.e., ob-
serving the (y, Y ) variables in each component. Thus, we
have UCDA-A and UCDA-O, uncoupled DA in the atmo-
sphere and the ocean, respectively.

4.1 Uncoupled versus weakly coupled data assimilation

Figure 10 shows the error of UCDA compared to that of
WCDA. In general, UCDA gives larger errors in both compo-
nents, indicating that using the coupled model for forecasting
is useful for propagating information across model compart-
ments and further decreasing the error. The error of UCDA is
different on each component, with the ocean presenting the
larger difference between UCDA and WCDA.

We can see that in UCDA-A (UCDA in the uncoupled at-
mosphere, Fig. 10a), the error has approximately the same
magnitude across all the spatio-temporal scale separations.
On the other hand, the error in UCDA-O (UCDA in the un-
coupled ocean, Fig. 10b) shows a clear pattern of increasing
error toward the small-slow modes of variability. Since the
same pattern is observed when comparing UCDA-O with a
partially observed WCDA – i.e. when observing atmosphere
or ocean only – (not shown), we can conclude that the cou-
pling is key to further decrease the error growth, via the
system’s dynamics. This pattern in the ocean becomes evi-
dent due to the dynamic characteristics of the system. The
area where UCDA-O performs the poorest is a region where
the cross-component correlation is largest (Fig. 4), and the
dominant error propagation is ocean→ atmosphere (Fig. 8);
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Figure 10. UCDA experiment 1RMSEUC
n for the uncoupled (a) atmosphere (UCDA-A) and (b) ocean (UCDA-O). The colour red (blue)

indicates that the UCDA error is larger (smaller) than that of the WCDA experiments. Dotted area indicates 1RMSEUC
n ≥ 0, meaning that

UCDA degrades over WCDA. Note that the colourbar for both components has different limits.

therefore, the interaction between both components is vi-
tal for efficient error constraint, especially in the small-slow
modes of ocean variability. This shows that a coupled analy-
sis provides better assimilation.

4.2 Joint atmospheric and ocean observations
network (FULL)

A comparison of WCDA with SCDA with observations on
ocean and atmosphere components is shown in Fig. 11. It is
important to note that overall, the differences between the
SCDA and WCDA are very small (about 0.1 % of clima-
tological error); i.e., both systems perform nearly equally
well. It was already reported in Sandery et al. (2020) that the
SCDA benefit over WCDA reduces when both components
are well observed. While confirming that finding, our results
further demonstrate that WCDA performs slightly better than
SCDA in most spatio-temporal configurations.

In the atmosphere (Fig. 11a), SCDA yields slight degra-
dation as the temporal scale separation decreases and most
when the scale separation between the two components is
large (small S). Both components are highly chaotic when τ
is 1 (Fig. 7). When S is small, most of the energy is found
in the chaotic ocean component (Fig. 3a). There is little gain
during the assimilation as the cross-covariance of the system
is relatively small (Fig. 4), and the performance is highly sen-
sitive to spurious covariance in the system (sampling error).

This result also aligns with the linear error analysis carried
out in Tondeur et al. (2020) that suggested that when the tem-
poral scale separation is not large, WCDA is preferable.

In the ocean (Fig. 11b), the dependence of the error on
the temporal separation is the opposite of that seen in the
atmosphere. It increases as the time scale separation becomes
larger, i.e., as the “stable” ocean becomes more sensitive to
the chaotic atmosphere. When the energy of the system is
dominated by the ocean (small S), performance is slightly
degraded, but when the energy is distributed or prominent in
the atmosphere component (S > 1), and the cross-covariance
is maximum, the SCDA improves over WCDA.

SCDA has little advantage over WCDA when both compo-
nents have good observation coverage. Furthermore, the sys-
tem becomes vulnerable to the approximation inherent in the
DA (sampling error, linear analysis update), which can lead
to slight degradation. We speculate that if we were increasing
ensemble size and softening the linear analysis update (e.g.,
with iterative approaches), this degradation would be gone,
and the SCDA would outperform WCDA, but discrepancies
would remain marginal.

Note also that when the ocean and atmosphere assimilate
data every 20dt , SCDA improves over WCDA for all (S, τ )
configurations, especially for the ocean, but the difference is
again very small (not shown). This result agrees with the ex-
periments of Penny et al. (2019), which shows that SCDA
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Figure 11. FULL experiment 1RMSESC
n for (a) atmosphere and (b) ocean. The colour red (blue) indicates that the SC error is larger

(smaller) than that of the WC experiments. Dotted area indicates 1RMSESC
n ≥ 0, meaning that SCDA degrades over WCDA. Note that the

colourbar for both components has different limits.

provides better analyses than WCDA in a fully observed sys-
tem, with the same assimilation cycle on both components.

4.3 Atmospheric observation network (ATM)

When we observe only the atmosphere (Fig. 12), SCDA
shows improvement over WCDA in nearly all spatio-
temporal scale experiments. The pattern of improvements in
the atmosphere and ocean components is similar; however,
the ocean shows comparatively larger improvement.

The benefit is largest when τ gets small, as the ocean
gets less chaotic and well constrained by the atmospheric
state. The region for τ < 0.25 shows a very strong sensitiv-
ity to S. Improvement of SCDA is largest when the ocean
has a large scale (S < 0.75), and holds most of the system’s
energy. The well-constrained atmosphere and atmospheric
data (even with moderate cross-covariance) can constrain
the predictable ocean. In the region where the ocean has a
smaller scale (S ≥ 0.75), SCDA has no impact, unlike in the
FULL experiment. This result can be explained as the atmo-
sphere→ ocean error propagation is smaller (Fig. 8); thus,
the atmospheric data has no impact over the ocean. Indeed,
the lack of ocean data implies that the ocean cannot influence
the atmosphere at analysis time. Furthermore, the ocean’s en-
ergy is too small to impact the coupling during the model
integration step.

Thus, we can conclude that using SCDA is highly ben-
eficial over the non-observed component (the ocean). The

ocean state improves with fast atmosphere observations, ex-
cept when the timescale separation is very large and the en-
ergy in the non-observed component is small. In this case,
the improvement is negligible on both components.

4.4 Ocean observations network (OCN)

When observing only the ocean, the skill pattern of the
SCDA, Fig. 13, is overall similar to what is seen in the case
of only the atmosphere being observed. Nevertheless, we see
now that the impact (positive or negative) of SCDA is larger
in the atmosphere and almost negligible in the ocean (∼ 1 %
of the climatological error).

Strongly coupled DA degrades over WCDA when the
ocean is fast and has a large amplitude (S ≥ 0.25, τ ≥ 0.5).
Both components are chaotic, but the ocean holds most of the
system’s energy. As the cross-covariance is minimal, and the
ocean→ atmosphere error propagation is small, the useful-
ness of the cross-update from the ocean towards the chaotic
atmosphere is limited and sensitive to the linear update and
sampling error. On the contrary, when the ocean’s energy
decreases (S < 0.25, τ ≥ 0.5), the ocean state benefits from
the improved atmosphere’s initial condition during the model
integration. There, the cross-covariance is high with an in-
creased ocean→ atmosphere error propagation so that the at-
mosphere can benefit from ocean observations. These results
resemble those obtained in Tang et al. (2021), which uses
SCDA in a real framework to update the atmosphere with
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Figure 12. As for Fig. 11 but with only the atmospheric state observed – ATM experiment.

Figure 13. As for Fig. 11 but with only the ocean state observed – OCN experiment.

ocean observations, improving the ocean-atmosphere tropi-
cal interface.

It is somewhat surprising that little improvement in the at-
mosphere is found when it interacts with a slow and small
ocean (S ≥ 0.25, τ < 0.5). In this region, the error propaga-
tion is largely in the atmosphere, and the cross-covariance

maximum and the sensitivity to error growth are largely dom-
inated by the ocean→ atmosphere. We conjecture that the
ocean assimilation cycle is so large that the cross-update can-
not properly constrain the atmospheric state, in agreement
with (Tondeur et al., 2020).
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In a way, the conclusions of the ocean observation network
are quite analogous to those found with the atmospheric ob-
servation network (being symmetrical w.r.t. the spatial scale).
We could anticipate that when the ocean timescale gets as
fast as the atmosphere, the benefit will further increase until
a certain threshold.

5 Concluding remarks

5.1 Summary and main findings

This study investigates how spatio-temporal scale separation
in coupled atmosphere-ocean dynamics – i.e., the instabil-
ity of the system – and the availability of observational data
on either or both of the components influence the skill of
different approaches to coupled data assimilation. In particu-
lar, we analyze the so-called uncoupled, weakly and strongly
coupled data assimilation (Penny and Hamill, 2017). In un-
coupled data assimilation, observations are assimilated using
an uncoupled system. In the WCDA, the observations in one
of the model components are used to infer the state of that
component only during the assimilation step. In the SCDA,
all the observations are used to infer the full coupled model,
no matter where they are taken.

We focus on ensemble-based data assimilation using the
well-established EnKF (Evensen, 2003) and use a prototyp-
ical low-dimensional coupled system obtained by coupling
together two Lorenz-63 models with different parameters
(Peña and Kalnay, 2004). The model configuration allowed
us to modify the parameters affecting the spatio-temporal
scales explicitly. The model’s low computational cost al-
lowed us to analyse its dynamic properties and made it pos-
sible to obtain statistically robust results.

The main conclusions are the following:

1. The coupling between the system’s components is vital
for error constraint, and its consideration that is possi-
ble in the coupled data assimilation framework provides
an effective method for decreasing initial error com-
pared to UCDA. In particular our findings indicate that
the ocean is important for atmospheric improvement,
as noted by Browne et al. (2019), and the atmosphere-
ocean interactions become increasingly important for
constraining the ocean’s slow variability.

2. In a well-observed system, the potential for improve-
ments over WCDA is very limited as observations from
both components constrain the system nearly optimally
already. We even find that sometimes SCDA degrades
the system’s performance. This is possibly due to the
approximation in the DA method – linear analysis up-
date and sampling error. The state vector to be updated
in SCDA has dimension 6, whereas it is 3 with WCDA
for the update of the individual components. Conse-
quently, for the same ensemble size, the sampling er-
ror is larger in the SCDA, which has a larger dimen-

sion to update than in the WCDA case. Furthermore,
the cross-component covariances are often weaker, and
their non-linearity grows as the temporal scale separa-
tion increases. Both aspects are difficult to estimate with
a small ensemble. The linear approximation during the
analysis with the EnKF can yield a degradation. When
the timescale separation (and, to a lesser extent, the spa-
tial scale separation) is large, a nonlinear update (e.g.,
Evensen et al., 2024) may be better suited.

3. SCDA improves over WCDA when only one compo-
nent is observed, and improvements are largest in the
non-observed component. The benefit is larger when
the observed component has a smaller spatial scale
(hence less energy in our idealized experimental setup).
A similar situation was also pointed out in Evensen
et al. (2024). Our study further finds how the temporal
scale separation limits this benefit. As such, the slow-
but-large variability modes of the ocean can be im-
proved from atmospheric observations, which, in turn,
improves dynamically during the forecast step. Simi-
lar conclusions have also been drawn in other idealized
studies such as Han et al. (2013), Sluka et al. (2016), and
Tondeur et al. (2020), in which the assimilation of atmo-
spheric observations improves ocean reanalysis. Con-
versely, using the relatively fast-ocean observations, it
is possible to constrain fast-large atmosphere modes. In
this regard, already O’kane et al. (2019) and Sandery
et al. (2020) in experiment AOOA, indicated that the as-
similation of ocean observations improves the initializa-
tion of a tropical-atmosphere component.

5.2 Discussion

Our study uses a low-order complexity model to explore iso-
lated cases of spatio-temporal scale separations with differ-
ent observation networks. Despite its simplicity, our study
confirms previous studies’ findings and provides a complete
picture of configurations where: (1) the benefit of CDA over
UCDA is demonstrated, and (2) SCDA is expected to yield
improvement over WCDA. However, we acknowledge the
simplifications of our experiment design and discuss their
expected impact on our conclusions: effects of the cou-
pling strength, the superposition of spatio-temporal scales,
the choice of data assimilation method, the choice of the ob-
servation network and model biases.

Our experiment assumes a weak coupling and studies cou-
pled processes in isolation, while the coupling strength varies
from process to process and often influences each other. The
influence of the coupling strength for comparing SCDA and
WCDA was studied in Tondeur et al. (2020), where it was
shown that a stronger coupling results in a more stable sys-
tem and higher cross-covariances among the components. As
such, we can anticipate that as the coupling gets weaker, the
observed benefit of SCDA over WCDA will fade out and

Nonlin. Processes Geophys., 32, 439–456, 2025 https://doi.org/10.5194/npg-32-439-2025



L. Garcia-Oliva et al.: Exploring the influence of spatio-temporal scale differences in coupled data assimilation 453

strengthen with a stronger coupling. For example, Miwa and
Sawada (2024) reports this benefit when increasing the cross-
component interaction in a system with equal spatial scale
separation. We do not think combining several processes is
an issue, as standard DA methods (particularly ensemble
methods) are designed for that. However, it is expected that
a larger ensemble size is required.

All experiments in our study were carried out with the
EnKF, which has the advantage of providing flow-dependent
error covariance, a property that is important for SCDA
(Penny et al., 2019). However, the linear analysis update
in the EnKF is suboptimal for strong non-linear dynamics
(Sakov et al., 2012; Yang et al., 2012), which can also oc-
cur with a too-long assimilation cycle. In our study, we en-
countered these situations when disparate spatial scales and
strongly chaotic components led to a degradation of SCDA.
We expect that methods that soften the linear analysis up-
date approximation, such as the iterative Ensemble Kalman
Filer (iEnKF, Bocquet and Sakov, 2012, 2014; Evensen
et al., 2024) or outer-loop 4D-Var (Laloyaux et al., 2016,
e.g., CERA-like method) would improve the performance
of SCDA. The iEnKF has been tested in a low-complexity
coupled model with different spatial scales by Evensen et al.
(2024), showing a good performance. It would be interest-
ing to test whether the iEnKF could remove the degradation
of the SCDA over the WCDA with our system. In situations
when the iterative approach is unable to mitigate the approx-
imation from the linear update, one could consider using the
lagged cross-correlations between the system’s components
as proposed by Lu et al. (2015a, LACC method). It should be
acknowledged that the LACC method only allows for a way
stream of information (from the fast to the slow component)
and is challenging to use with the superposition of processes
with different spatio-temporal scales.

Another limitation of the EnKF is sampling error, as large
ensemble sizes are needed to accurately sample the variance
of the system (Han et al., 2013; Quinn et al., 2020). We did
not investigate this issue in our study as 20 members can al-
ready be considered a large ensemble size given the size of
our dynamical system (Bocquet and Carrassi, 2017). With a
realistic system, the sampling error is comparatively much
larger. Based on our dynamic analysis, we can infer that the
limited ensemble size becomes a more restrictive factor for
the successful implementation of SCDA as the timescale sep-
aration increases (Fig. 6). Different approaches have been
proposed to address sampling error. Some methods consider
the system’s dynamic characteristics, such as Quinn et al.
(2020), which uses the attractor dimension to estimate the
rank of the cross-covariance needed for SCDA. Ad-hoc so-
lutions such as vertical localization, as discussed by Stanley
et al. (2024), or the correlation-cutoff method, as in Yoshida
and Kalnay (2018), and hybrid covariance (Barthelemy et al.,
2024) are also options to address the same issue.

One of the key findings of our study is the confirmation
of the CDA’s higher potential over UCDA in reducing the

error in both components, thereby legitimising the transition
toward WCDA. Our results have implications for NWP, in-
dicating that including the ocean improves the initial state
of the atmosphere (Browne et al., 2019). In the case of S2D
predictions, where the ocean state is the key source of pre-
dictability, this transition – UCDA to WCDA – has already
been tested (Balmaseda et al., 2009; Penny and Hamill, 2017;
Skachko et al., 2019). In this study, we further present im-
plications for the initialization of slower modes of variabil-
ity, showing the importance of atmospheric coupling for such
time scales.

Our study highlighted that the observational network is
a significant factor in deciding when SCDA outperforms
WCDA. Here, we only assess configurations where observa-
tions are limited to the atmosphere, the ocean, or both com-
ponents. The situation is not as distinct in a real framework,
but it still shows a strong imbalance between the observa-
tion network of the different components. Historically, ocean
observations have been scarce compared to the atmospheric
network (Laloyaux et al., 2018). We can thus anticipate two
situations: first, that the largest benefit of SCDA is expected
in the ocean component, meaning that the large-slow ocean
modes of variability can benefit from the high-frequency
atmospheric variability, potentially improving seasonal-to-
decadal predictions, as shown in Sandery et al. (2020). Sec-
ondly, in the context of NWP, we can infer that WCDA
will remain the best strategy for initializing the atmospheric
state in medium-range weather forecasts over the upcom-
ing years. The atmosphere marginally benefits from the im-
proved ocean – obtained with SCDA of atmospheric observa-
tions. This little improvement is more evident with the con-
figurations where a large and fast atmosphere interacts with
a small and slow ocean, characteristic of the extratropics,
where the impact of SCDA is negligible compared to that
of WCDA. However, we acknowledge that there has been
recent rapid progress in the ocean observation network. For
example, the SWOT altimetry (Morrow et al., 2019) may al-
low for constraining ocean fronts at a much finer scale than
is currently possible, providing another exciting perspective
on SCDA, having the capability to enhance NWP based on
the fine-fast ocean observations.

Finally, given our perfect-model assumption, we have not
addressed one critical aspect: how model bias can hinder
SCDA’s potential. Earth System Models have large biases
(Palmer and Stevens, 2019; Richter et al., 2014; Tian and
Dong, 2020), and coupled processes are often only partially
represented. Therefore, as models increase their resolution
and the availability of ocean observations changes and bet-
ter resolve those coupled processes (Hewitt et al., 2017; Kim
et al., 2023), ocean observations can provide more useful in-
formation about the atmosphere’s surface processes, making
SCDA a powerful tool for initializing the coupled system and
making skilful predictions.
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