Articles | Volume 32, issue 4
https://doi.org/10.5194/npg-32-397-2025
https://doi.org/10.5194/npg-32-397-2025
Research article
 | 
20 Oct 2025
Research article |  | 20 Oct 2025

Improving dynamical climate predictions with machine learning: insights from a twin experiment framework

Zikang He, Julien Brajard, Yiguo Wang, Xidong Wang, and Zheqi Shen

Related authors

Correcting errors in seasonal Arctic sea ice prediction of Earth system models with machine learning
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
The Cryosphere, 19, 3279–3293, https://doi.org/10.5194/tc-19-3279-2025,https://doi.org/10.5194/tc-19-3279-2025, 2025
Short summary

Cited articles

Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophysical research letters, 36, https://doi.org/10.1029/2008GL035561, 2009. a, b
Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., Fan, Y., and Eldevik, T.: NorCPM1 and its contribution to CMIP6 DCPP, Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, 2021. a, b
Bocquet, M., Raanes, P. N., and Hannart, A.: Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation, Nonlin. Processes Geophys., 22, 645–662, https://doi.org/10.5194/npg-22-645-2015, 2015. a
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016. a, b
Bonavita, M. and Laloyaux, P.: Machine learning for model error inference and correction, Journal of Advances in Modeling Earth Systems, 12, e2020MS002232, https://doi.org/10.1029/2020MS002232, 2020. a, b
Download
Short summary
Climate prediction is challenging due to systematic errors in traditional climate models. We addressed this by training a machine learning model to correct these errors and then integrating it with the traditional climate model to form an AI-physics hybrid model. Our study demonstrates that the hybrid model outperforms the original climate model on both short-term and long-term predictions of the atmosphere and ocean.
Share