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Abstract. Systematic errors in dynamical climate models remain a significant challenge to accurate climate
predictions, particularly when modeling the nonlinear coupling between the atmosphere and ocean. Despite
notable advances in dynamical climate modeling that have improved our understanding of climate variability,
these systematic errors can still degrade prediction skills. In this study, we adopt a twin experiment framework
with a reduced-order coupled atmosphere-ocean model to explore the utility of machine learning in mitigating
these errors. Specifically, we train a data-driven model on data assimilation increments to learn and emulate the
underlying dynamical climate model error, which is then integrated with the dynamical climate model to form
a hybrid model. Comparison experiments show that the hybrid model consistently outperforms the standalone
dynamical climate model in predicting atmospheric and oceanic variables. Further investigation using hybrid
models that correct only atmospheric or only oceanic errors reveals that atmospheric corrections are essential
for improving short-term predictions, while concurrently addressing both atmospheric and oceanic errors yields

superior performance in long-term climate prediction.

1 Introduction

Climate prediction aims at predicting the future state of the
climate system based on the initial conditions and external
forcings (e.g., greenhouse gases and aerosols) covering var-
ious lead times from seasons to decades (Merryfield et al.,
2020). It helps scientists, policymakers, and communities in
understanding potential risks and impacts. It differs from cli-
mate projections that focus primarily on capturing long-term
climate trends and patterns from several decades to centuries
by anticipating changes in external forcings and their impact
on the climate system.

Dynamical climate models, such as atmosphere-ocean
coupled general circulation models, have been widely used
for climate predictions (e.g., Doblas-Reyes et al., 2013b;
Boer et al., 2016). Uncertainties in initial conditions fed to
dynamical climate models and model errors are two criti-

cal sources that limit the prediction skill of dynamical cli-
mate models. To reduce the uncertainties of initial condi-
tions, climate prediction centers (Balmaseda and Anderson,
2009; Doblas-Reyes et al., 2013a) have been evolving to-
wards the use of data assimilation (DA, Carrassi et al.,
2018) which combines observations with the dynamical cli-
mate models to estimate the best initial conditions of the
climate prediction (Penny and Hamill, 2017). Model errors
can arise from a variety of sources, including model param-
eterizations (Palmer, 2001), unresolved physical processes
(Moufouma-Okia and Jones, 2015), and numerical approxi-
mations (Williamson et al., 1992). Despite substantial efforts
to improve dynamical climate models, these errors remain
notably large (e.g., Richter, 2015; Palmer and Stevens, 2019;
Richter and Tokinaga, 2020; Tian and Dong, 2020).

There is a growing interest in utilizing machine learning
(ML) techniques to address errors in a dynamical climate
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model. ML can be employed to construct a data-driven pre-
dictor of model errors, which can then be integrated with
the dynamical climate model to create a hybrid statistical-
dynamical model (e.g., Watson, 2019; Farchi et al., 2021a;
Brajard et al., 2021; Watt-Meyer et al., 2021; Bretherton
et al., 2022; Chen et al., 2022; Gregory et al., 2024).

Some notable studies (e.g., Watson, 2019; Brajard et al.,
2021; Farchi et al., 2021a, 2023) focused on methodological
developments within low-order or simplified coupled mod-
els operating in an idealized framework where the ground
truth is known. For example, Farchi et al. (2021a) investi-
gated two approaches in a two-scale Lorenz model, both of
which are potential candidates for implementation in oper-
ational systems. One approach involves correcting the so-
called resolvent of the dynamical climate model (i.e., mod-
ifying the model output after each numerical integration of
the model). The other approach entails adjusting the ordi-
nary or partial differential equation governing the model ten-
dency before the numerical integration of the model. Simi-
larly, Watson (2019) examined the tendency correction ap-
proach in the Lorenz 96 model. Brajard et al. (2021) ex-
plored the resolvent correction approach in the two-scale
Lorenz model as well as in a low-order coupled atmosphere-
ocean model called the Modular Arbitrary-Order Ocean-
Atmosphere Model (MAOOAM, De Cruz et al., 2016). Their
study aimed to infer the model errors associated with unre-
solved processes within the dynamical climate model. While
Brajard et al. (2021) conducted prediction experiments us-
ing perfect initial conditions, more recent studies such as
Farchi et al. (2023) examined the performance of hybrid
models initialized with imperfect conditions, using a two-
layer quasi-geostrophic (QG) model. Despite recent efforts
to incorporate more realistic settings, hybrid models are still
frequently evaluated under idealized conditions in which the
initial state, taken from the same model as the reference, is
assumed to be perfectly known.

Several other investigations tested ML-based error cor-
rection methods in realistic numerical weather prediction
(NWP) (e.g., Bonavita and Laloyaux, 2020; Watt-Meyer
et al., 2021; Bretherton et al., 2022; Chen et al., 2022; Gre-
gory et al., 2024; Farchi et al., 2025). Bonavita and Laloyaux
(2020) demonstrated that ML can emulate model error cor-
rections derived from weak-constraint 4D-Var in ECMWEF’s
Integrated Forecasting System (IFS), highlighting the poten-
tial of ML to systematically reduce model errors through-
out the atmospheric column. Watt-Meyer et al. (2021) used
random forests trained on FV3GFS nudging tendencies to
correct model tendencies, achieving stable year-long runs
and improved short-term forecasts for 500 hPa height, sur-
face pressure, and near-surface temperature. Bretherton et al.
(2022) corrected coarse-grid model errors by applying ML-
learned temperature and humidity tendencies from a high-
resolution reference, significantly improving prediction skills
and precipitation patterns. Chen et al. (2022) used ML to
learn the analysis increments (i.e., the differences between
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the analysis and background, Evensen, 2003) and correct
state-dependent model errors in NOAA’s FV3-GFS. The on-
line application of these corrections during model integration
led to enhanced DA performance and improved 10d predic-
tions. Gregory et al. (2024) developed a hybrid dynamical-
statistical framework that employs convolutional neural net-
works trained on sea ice concentration (SIC) assimilation in-
crements, leading to improved five-year sea ice simulations.
Most recently, Farchi et al. (2025) implemented an ML-based
model error correction scheme within ECMWF’s operational
IFS. Their results indicated that offline-trained networks can
already offer robust corrections, while online updates further
enhance adaptability under diverse conditions. However, the
potential benefits of ML-based model error correction for cli-
mate prediction across different time scales remain largely
unexplored. This is primarily due to the sparsity of long-
term observational records (such as those spanning the 20th
century) in both time and space, which presents significant
challenges for developing effective ML-based error correc-
tion models for climate prediction applications.

In this study, we investigate the potential of ML-based
model error correction for climate prediction within an ide-
alized framework. To this end, we adopt the hybrid modeling
approach introduced by Brajard et al. (2021), which is based
on MAOOAM. The ML-based error correction model aims to
learn and correct dynamical climate model errors using anal-
ysis increments. Unlike Brajard et al. (2021), we conduct en-
semble predictions with imperfect initial conditions (Farchi
et al., 2023), which better reflect realistic prediction scenar-
ios (Wang et al., 2019; Bethke et al., 2021). Specifically, we
examine how the effectiveness of ML-based error correction
varies across different climate time scales. Moreover, given
that the respective roles of atmospheric and oceanic errors in
limiting climate predictability are not fully understood, we
assess the relative contributions of these components to the
overall prediction error.

The article is organized as follows: Sect. 2 introduces the
main methodological aspects of the study. Section 3 shows
the prediction skill of the hybrid model compared with the
dynamical climate model and discusses factors affecting the
prediction skill of the hybrid model. Finally, a brief conclud-
ing summary is presented in Sect. 4.

2 Methodology

In this study, we restrict our scope to model errors stem-
ming solely from coarse resolutions in the atmospheric com-
ponent. In this section, we describe the model (Sect. 2.1),
DA technique (Sect. 2.2), and the ML approach (Sect. 2.3).
Rather than focusing on methodological developments, our
goal is to examine how the advantages of ML-based error
correction evolve in time in the context of climate prediction
and to determine which errors should be corrected at differ-

https://doi.org/10.5194/npg-32-397-2025



Z. He et al.: Improve dynamical climate prediction with machine learning 399

ent timescales. Further details in experiments are provided in
Sect. 2.4.

2.1 Modular arbitrary-order ocean-atmosphere model

We utilize MAOOAM developed by De Cruz et al. (2016)
in our study. MAOOAM consists of a two-layer QG atmo-
spheric component coupled with a QG shallow-water oceanic
component. The coupling between these components incor-
porates wind forcings, radiative and heat exchanges, en-
abling it to simulate climate variability. MAOOAM has been
widely employed in qualitative analyses for various purposes
(e.g., Penny et al., 2019; Brajard et al., 2021). Moreover,
MAOOAM'’s numerical efficiency allows us to execute nu-
merous climate prediction experiments at a relatively low
computational cost.

In MAOOAM, the model variables are represented in
terms of spectral modes. Specifically, dyx (doyx) represents
the x-direction resolution, and d,y (doy) represents the y-
direction resolution in the atmosphere (ocean). The model
state comprises 1, (Ma = day(2day +1)) modes of the at-
mospheric streamfunction ¥, and temperature anomaly 6,,
as well as ny (no = doydox) modes of the oceanic stream-
function v, and temperature anomaly 6,. Consequently, the
model state can be expressed as:

X =(Va,1, ¥a2,--
WO,I, 1/fo,27 ..

. wa,na’ 92[,1 ’ 9&,27 ..
) 1po,n(,a 90,1 s 90,2, ..

i Qa,na’

-+ 0o,n,) ey

The total number of variables in the model state is 2n, + 2n,.
Note that n, is typically larger than n,, reflecting the dis-
tinct characteristics of the two components in MAOOAM.
The atmosphere exhibits faster dynamics and smaller-scale
variability, necessitating a greater number of modes to ade-
quately capture its behavior. In contrast, the ocean evolves
more slowly and is dominated by larger-scale processes,
which can be effectively represented using fewer modes
(De Cruz et al., 2016). It is also important to note that
variables with lower indices correspond to low-order (large-
scale) processes, while variables with higher indices corre-
spond to high-order (small-scale) processes. Like many other
models formulated in spectral space, MAOOAM offers flex-
ibility in adjusting the number of atmospheric and oceanic
variables by simply modifying the model resolution in spec-
tral space.

In this study, we utilize two different configurations of
MAOOAM: one denoted as M56 and the other as M36. The
MS56 configuration comprises a total of 56 variables, with 20
atmospheric modes (n, = 20) and 8 oceanic modes (1, = 8).
Specifically, the atmosphere in M56 operates at a 2x — 4y
(i.e., daxy =2 and d,y, = 4) resolution, and the ocean oper-
ates at a 2x — 4y (i.e., doy =2 and d,y = 4) resolution. On
the other hand, the M36 configuration includes 36 variables,
with 10 atmospheric modes (7, = 10) and 8 oceanic modes
(ny, = 8), identical to M56. The atmospheric component in
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M36 operates at a 2x — 2y resolution (dax =2, day =2),
while the ocean component matches that of M56. Figure 1
displays time series of three key variables in the true model
M56 and the dynamical climate model M36 in spectral space,
illustrating their different evolution patterns (De Cruz et al.,
2016).

It is important to note that the key distinction between M36
and M56 lies in the atmosphere, where M36 has a reduced
number of atmospheric modes, specifically 10 modes fewer
than M56 in the y-direction. This difference leads to a lack of
higher-order atmospheric modes in M36, thereby unable to
capture small-scale variability. The atmospheric error in the
y-direction propagates to the atmosphere in the x-direction
and the ocean component through the coupling terms in the
equations. Consequently, the primary source of model error
in this study is attributed to the coarse resolution of the at-
mospheric component in the y-direction.

2.2 Ensemble Kalman filter

The Ensemble Kalman Filter (EnKF) is a flow-dependent
and multivariate DA method and has been implemented
for climate prediction (e.g., Zhang et al., 2007; Karspeck
et al., 2013; Wang et al.,, 2019). The EnKF constructs
the background error covariance from the dynamical en-
semble. The utilization of an ensemble-based error covari-
ance ensures that the assimilation updates approximately re-
spect to the model dynamics, thereby mitigating assimilation
shocks (Evensen, 2003).

All experiments in this study are conducted using the
DAPPER package (Raanes, 2018). The overall experimen-
tal setup is described in Sect. 2.4 and depicted in Fig. 2.
Specifically, we employ the finite-size ensemble Kalman fil-
ter (EnKF-N) method proposed by Bocquet et al. (2015).
This method adaptively adjusts the inflation factor, thereby
reducing the need for extensive manual tuning and enhancing
the performance of the assimilation experiments. It is worth
mentioning that we expect no significant alterations in the
conclusions of this paper when using the traditional EnKF
methods instead of EnKF-N.

2.3 Atrtificial neural network architecture

We consider the dynamical climate model (described in
Sect. 2.1) in the following form:

X1 = M(xp), 2)

where x4 represents the full model state at #x11, x; rep-
resents the full model state at #; and M represents the dy-
namical climate model integration from time #; to #x41. The
model error at time #;y is defined as:

t
Ekt1 =X} — Xit1, 3

where x}( 41 represents the true state at time #41.

Nonlin. Processes Geophys., 32, 397-409, 2025



400

Z. He et al.: Improve dynamical climate prediction with machine learning

1ox107 (@) Yy 1.0x1073 () 4 20x1071 (€ b5
—— True model
—— Dynamical climate model 0.8 15
0.6
2 04 o 1.0
5 ¥
= 02 B
3 < 05
> 0.0
-0.2 0.0
-0.4
10 20 30 40 50 60 0 10 20 30 40 50 60 _0‘50 10 20 30 40 50 60
Time (years) Time (years) Time (years)

Figure 1. Time series of the true model (red lines) and the dynamical climate model (green lines) for three key variables: (a) ¥, 1, (b) ¥ 2,
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Figure 2. Schematic of experiments.

We aim to use ANN to emulate the model error &4 .
Since the truth is not known in practice, the training of ANN
uses the analysis increments produced by the EnKF (Brajard
et al., 2021; Farchi et al., 2021b; Gregory et al., 2024). The
architecture of ANN used in this study consists of four lay-
ers:

The input layer includes a batch normalization
layer (loffe, 2017), which helps to regularize and nor-
malize the training process.

— The second layer is a dense layer with 100 neurons. It
applies the rectified linear unit (ReLU) activation func-
tion, which introduces non-linearity into the network.

— The third layer has the same configuration as the second
layer, with 50 neurons and ReLU activation function.

— The output layer, which is a dense layer with a linear
activation function and produces the final predictions,
is optimized using the “RMSprop” optimizer (Hinton
et al., 2012) and includes an L2 regularization term with
a value of 107,

During training, the ANN model is trained with a batch size
of 128 and for a total of 300 epochs.
The error surrogate model can be expressed as follows:

“

€1p1 = ManN(xp),
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where M ANN represents the data-driven model built by ANN
and & 41 represents the model error estimated by ANN. The
full state at time #x1 of the hybrid model can be expressed
as follows:

X = M(xp) + Mann(xr) (5)

2.4 Experiment settings

We present the experimental setup in Fig. 2. The experiments
are conducted using two configurations of MAOOAM, as
described in Sect. 2.1. The configuration with 56 variables
(M56, Sect. 2.1) represents the true climate system, while the
configuration with 36 variables (M36, Sect. 2.1) represents a
dynamical climate prediction system. The experiments de-
picted in Fig. 2 are performed as follows:

— We integrate the M56 configuration with a time step of
approximately 1.6 min for a spin-up period of 30726.5
years, as specified in De Cruz et al. (2016). Following
the spin-up period, we continue the simulation for an
additional 249 years, which we refer to as the “truth”.
To generate observations, we perturb the “truth” state
using a Gaussian random noise. The standard deviation
(o) of the noise is set to 10 % of the temporal stan-
dard deviation of the true state (x') after subtracting the
one-month running average. Observations are generated
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every 27 h in spectral space, while the observation op-
erator H is the identity operator (H = I) and is also ap-
plied in spectral space.

— We assimilate synthetic observations into the dynamical
climate model (M36) and generate analysis with 50 en-
semble members over the same period as the truth. The
initial conditions of the ensemble are randomly sampled
from a long free-run simulation of M36 after the spin-up
period.

— We generate several sets of ensemble predictions with
the dynamical climate model (M36) or the hybrid
model. The prediction experiments start in each second
year from the year 125 to the year 185, with each pre-
diction lasting for 60 years. Each prediction consists of
50 ensemble members. The initial conditions for these
ensembles are taken from the analysis (Fig. 2).

Note that both the observations and DA are conducted in the
spectral space. Accordingly, the hybrid model is developed
within the spectral space.

We split the analysis into two parts:

— Training data: The former 124.6 years of the dataset are
used to train the ANN parameters to build the hybrid
model (Fig. 2).

— Test data: The latter 124.6 years of the dataset are used
to initialize prediction experiments (Fig. 2).

It is worth noting that since we employ the same ANN con-
figurations as outlined in Brajard et al. (2021), the ANN
parameters in this study are trained only once, without any
modifications throughout the training process by using a sep-
arate validation set. We examined the loss curves (not shown
in this study) to assess the training behavior. The loss curves
provided evidence that the network was continuing to learn
without signs of overfitting throughout the training process.

Brajard et al. (2021) focused on developing the hybrid
model methodology; our study aims to explore the evolu-
tion of prediction skill as a function of lead time. We as-
sess the prediction skill over a wider range of lead times,
specifically up to 50 d for atmospheric variables and up to 60
years for oceanic variables. By examining the skill at various
lead times, we can gain insights into the temporal evolution
and long-term performance of the hybrid model, providing
a more comprehensive understanding of its capabilities and
limitations. To do so, our experimental setup is different from
that of Brajard et al. (2021) in the following ways:

— We extended the simulation time to 219.2 years, while
Brajard et al. (2021) generated an analysis dataset span-
ning 62 years for training, validation and testing. We
divided our analysis dataset into two distinct parts: one
for training the ANN and the other for testing purposes.
This separation allows us to independently evaluate the
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performance of the trained ANN using data that was not
used during the training phase.

— Our experiments utilize the analysis as initial condi-
tions, while Brajard et al. (2021) uses perfect initial
conditions (i.e., the truth) to initialize predictions. This
choice reflects a more realistic scenario, as perfect
knowledge of initial conditions is rarely available in the
real framework. By using the analysis as initial condi-
tions, we aim to capture the practical challenges asso-
ciated with imperfect knowledge of the initial state in
climate prediction.

— Our study incorporates an ensemble prediction strategy
with 50 members, while Brajard et al. (2021) performed
predictions using a single member (i.e., deterministic
prediction). In the climate prediction community, prob-
abilistic predictions based on ensembles are widely rec-
ognized. Ensembles provide a valuable means of quan-
tifying uncertainty in climate predictions by generating
multiple realizations rather than a single deterministic
prediction.

2.5 Validation metrics

To evaluate the prediction skill of each variable, we em-
ploy the correlation and root mean square error (RMSE)
skill score (RMSE-SS), which are commonly used metrics in
weather forecasting and climate prediction. The correlation
is defined as:

(xi =) =)
Correlation = d , (6)

N N
(i —X)? Y (yi —)?
i=1 i=1

N
=1

where x represents the prediction (ensemble mean) and y
represents the truth. N is the total number of prediction ex-
periments and is equal to 30 (Sect. 2.4).

The RMSE is calculated as follows:

(i — )%, 7)

where x represents the prediction (ensemble mean), y repre-
sents the truth, and N is the total number of prediction exper-
iments. The RMSE-SS compares the RMSE of the prediction
to the RMSE of a persistence prediction. It is defined as:

RMSEprediction

RMSE-SS=1— —M,
RMSEpersistence

(®)
where RMSEediction represents the RMSE between the pre-
diction (ensemble mean) and the truth and RMSEpersistence
represents the RMSE between a persistence prediction
(where the state remains the same as the initial conditions)
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and the truth. A positive RMSE-SS indicates that the predic-
tion outperforms persistence and demonstrates skill. On the
other hand, a negative RMSE-SS indicates that the prediction
performs worse than the persistence and lacks skill. By uti-
lizing the correlation and RMSE-SS, we can assess and com-
pare the skill of the predictions generated by the dynamical
climate model and the hybrid model across different vari-
ables within the same panel, as shown in Fig. 4.

To assess the statistical significance of the correlation and
RMSE-SS, we perform a two-tailed Student’s z-test based
on the p-value. For the correlation, the null hypothesis is
that the correlation is not significantly different from zero,
implying no relationship between the predictions and truth.
For RMSE-SS, we perform a hypothesis test to determine
whether the squared errors (SE) from the prediction and per-
sistence methods differ significantly. Specifically, we com-
pute the SE for both methods and apply a two-tailed 7-test
to assess whether their means are significantly different. As-
suming sufficiently large sample sizes, the difference be-
tween the mean squared error (MSE) can be approximated
as normally distributed. This approximation is valid under
the conditions that the SE from the two methods are inde-
pendent and have the same mean value:

MSEprediction - MSEpersistence
2

S2 S
rediction ersistence
~N{o0, 2 + -2 ,
N N

where sgrediction and sgersistence are the sample variances of
the SE, and N is the total number of prediction experiments.
The resulting p-value represents the probability of observing
the given difference (or larger) under the null hypothesis. A
p-value below 0.05 is considered statistically significant, in-
dicating that the prediction and persistence methods exhibit
meaningfully different error characteristics.

To estimate the uncertainties of correlation and RMSE-SS,
we utilize the bootstrap method. We randomly select, with
replacement, 30 data points from the 30 prediction experi-
ments and calculate the correlation and RMSE-SS based on
this sampled data. This procedure is repeated 10000 times,
resulting in a sample of 10000 correlation and RMSE-SS
values. The standard deviation of this sample is then used to
estimate the uncertainties associated with the correlation and
RMSE-SS. By conducting the 7-test and utilizing the boot-
strap method, we can obtain a more comprehensive under-
standing of the significance and reliability of the correlation
and RMSE-SS values obtained from the prediction experi-
ments.

In climate prediction, time-mean quantities such as
monthly (Wang et al., 2019) or annual averages (Boer et al.,
2016; Bethke et al., 2021) are often used because time aver-
aging reduces the impact of chaotic weather variability, mak-
ing the underlying climate signals more apparent. They also
better meet the practical needs of sectors such as agriculture
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and energy, where planning is often based on mean condi-
tions. In contrast, predicting higher-order statistics accurately
remains challenging due to model limitations and computa-
tional costs, particularly when high-resolution Earth system
models are required. Nevertheless, there is growing interest
in representing complex statistical properties to improve the
prediction of extreme events and support climate risk assess-
ments.

To evaluate prediction skill across different time scales, we
apply two complementary strategies. For short-term predic-
tions, instantaneous outputs sampled every 27 h are used to
represent daily variations. For long-term predictions, model
outputs are averaged annually to assess the ability to capture
low-frequency variability.

3 Results

3.1 Prediction skill

The distinction between short-term (daily) and long-term
(yearly-averaged) prediction scales in this study is based on
the fundamentally different error growth characteristics of at-
mospheric and oceanic variables. As illustrated in Fig. 3, at-
mospheric variables exhibit rapid error amplification, with
a doubling error time of approximately one day and satu-
ration occurring within about ten days. In contrast, oceanic
variables demonstrate much slower error growth, with errors
roughly doubling over the first year and continuing to grow
gradually over the subsequent decade.

Within the coupled model framework, the hybrid model
is developed to enhance prediction skill across both short-
term and long-term timescales. To evaluate its performance,
we adopt 50 d and 60-year prediction horizons as representa-
tive benchmarks for the subseasonal-to-seasonal and decadal
prediction regimes, respectively. The 50 d prediction reflects
the model’s capability in capturing fast-evolving atmospheric
processes, while the 60-year prediction assesses its capacity
to maintain predictability over longer oceanic timescales.

Figure 4a and ¢ show respectively the correlation and
RMSE-SS of the dynamical climate model for both atmo-
spheric temperature 6, and streamfunction v, in the spectral
space. We find that the variables in low-order atmospheric
modes, such as ¥, 2, Va3, 62,2 and 6, 3, have significant pre-
diction skills over 10d. While most variables in high-order
modes have significant skills within a few days, some do
not have prediction skills all the time (i.e. Y19, ¥a 10 and
0a,10)- Figure 4b and d show the correlation and RMSE-SS
of the hybrid model for atmospheric variables. For atmo-
spheric temperature, the hybrid model is skillful for up to
50d for most modes (Fig. 4b), with a significant reduction in
prediction error beyond 10d for most modes (Fig. 4d). For
atmospheric streamfunction, the hybrid model is skillful in
predicting low-order atmospheric modes for up to 50d and
high-order modes for up to 15d. Overall, the hybrid model
has higher correlations and RMSE-SS than the dynamical cli-
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the hybrid model and truth. (d, h) The RMSE-SS between the hybrid model and truth. The atmospheric variables are calculated based on
daily data, while the oceanic variables are based on annual average data. The black dot indicates the correlation does not exceed the 95 %

significance test.

mate model for atmospheric variables. And the hybrid model
exhibits greater improvements in lower-order modes com-
pared to higher-order modes (Fig. 4a, b, c, and d).

Figure 4e and g show the correlation and RMSE-SS of
the dynamical climate model for oceanic temperature and
streamfunction. Since the ocean exhibits slower variability
than the atmosphere, we compute annual means for oceanic
variables to evaluate the model’s prediction skill on interan-
nual timescales. The dynamical climate model demonstrates
significant prediction skill for up to 60 years in oceanic tem-
perature across most modes, and in oceanic streamfunction in

https://doi.org/10.5194/npg-32-397-2025

certain modes. Overall, odd-numbered modes exhibit higher
prediction skill than even-numbered modes, related to our
experimental design (i.e., the difference in atmospheric y-
direction mode resolution between M56 and M36). In ad-
dition, the oceanic temperature is more predictable than the
oceanic streamfunction in the spectral space. Figure 4f and h
present the prediction skills of the hybrid model. The hybrid
model has significant prediction skills in both oceanic tem-
perature and streamfunction in all modes for up to 60 years. It
is worth noting that the hybrid model has higher correlations
and RMSE-SS than the dynamical climate model, in partic-
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ular, for oceanic temperature in the first and last modes and
oceanic streamfunctions in some modes in which the dynam-
ical climate model has no prediction skill at all (e.g., ¥, 2 and
1)00,6)-

To further demonstrate the advantages of the hybrid
model, we use a 10 d lead time for atmospheric variables and
a40-year lead time for oceanic variables as examples to show
the prediction skills of the hybrid model in the physical space
(Figs. 5 and 6).

For atmospheric variables, both atmospheric streamfunc-
tion and temperature exhibit similar spatial characteristics
(Fig. 5). We find that the hybrid model has similar spatial pat-
terns but outperforms the dynamical climate model in most
grid points.

For oceanic temperature, the dynamical climate model
loses prediction skill over the majority of grid points (Fig. 6a
and c). In contrast, the hybrid model demonstrates signifi-
cantly higher prediction skill across most grid points (Fig. 6e
and g). For oceanic streamfunction, owing to the slow nature
of variability in MAOOAM, the dynamical climate model
retains high prediction skill at all grid points even at a 40-
year lead time (Fig. 6b and d). The hybrid model further im-
proves upon this, showing higher correlations and RMSE-SS
at all grid points, thereby outperforming the dynamical cli-
mate model (Fig. 6f and h).

For long-term climate prediction, there are additional re-
quirements that the hybrid model must meet. Specifically,
the model should be capable of running for extended periods
without diverging or exhibiting significant physical instabil-
ity. In our study, we find that the hybrid model maintains sta-
bility and does not experience significant physical instability
during the 60-year prediction period.

In summary, the overall performance of the hybrid model
surpasses that of the dynamical climate model in both spec-
tral and physical space, demonstrating the advantages of in-
corporating a data-driven error correction model constructed
by ML. This result highlights the potential benefits of lever-
aging data-driven approaches to improve climate prediction
skills.

3.2 Importance of atmospheric or oceanic error
correction

In this section, we extend our analysis by constructing two
additional hybrid models to explore the influence of correct-
ing atmospheric and oceanic errors separately. These mod-
els are trained using the same inputs as in the previous sec-
tion, but are designed to correct either atmospheric errors or
oceanic errors. By comparing the prediction skills of the re-
gional averaged variables in physical space among these hy-
brid models, we gain some insight into the relative impor-
tance of atmospheric and oceanic error correction for the
overall performance of the climate prediction on different
time scales.
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In Fig. 7a, b, e, and f, we present the correlation and
RMSE-SS of different models specifically for the atmo-
spheric streamfunction and temperature. We observe that
there is minimal difference in prediction skill between cor-
recting only the atmospheric errors (green line) and correct-
ing both the atmospheric and oceanic errors (red line). How-
ever, in the early prediction period (less than 20 d), correct-
ing only atmospheric errors has slightly higher skills than
correcting both atmospheric and oceanic errors simultane-
ously. When comparing the hybrid models with the dynami-
cal climate model (blue line), we find that correcting only the
oceanic errors (cyan line) does not lead to improvements in
atmospheric prediction. It is related to the fact in MAOOAM
that the atmosphere mostly drives the ocean but the ocean has
too weak influence on the atmosphere for short-term climate
prediction (Jung and Vitart, 2006).

In Fig. 7c, d, g and h, we focus on the long-term predic-
tion skill of various hybrid models for the oceanic stream-
function and temperature. Our results reveal that the highest
prediction skill over 60 years is achieved when both atmo-
spheric and oceanic errors are corrected (red line). The hy-
brid models constructed by correcting only atmospheric or
oceanic model errors exhibit different performances. For the
oceanic streamfunction (Fig. 7c, g), correcting only oceanic
errors (cyan line) does not improve prediction skill. As lead
time increases, both the correlation and RMSE-SS metrics
indicate a degradation in performance, with skill levels even
lower than the dynamical climate model (blue line). In con-
trast, correcting only atmospheric errors (green line) signif-
icantly improves prediction skill within the first 20 years.
However, beyond 20-30 years, the skill gradually declines
and becomes comparable to that of the dynamical climate
model. Notably, the hybrid correction that simultaneously
addresses both atmospheric and oceanic model errors (red
line) consistently outperforms the dynamical climate model
after 30 years, in both correlation and RMSE-SS metrics.

Regarding oceanic temperature (Fig. 7d and h), correct-
ing only atmospheric errors does not improve the prediction
of oceanic temperatures, while only correcting oceanic errors
can enhance the prediction skill of oceanic temperatures. Ad-
ditionally, simultaneously correcting both atmospheric and
oceanic errors (red line) can achieve the highest prediction
skills at all lead times.

To better illustrate the advantages of the hybrid model, we
use one prediction experiment as an example to demonstrate
the benefits of correcting model errors for long-term simula-
tions (Fig. 8). For atmospheric variables (Fig. 8a and b), cor-
recting only one component does not effectively simulate the
slow frequency atmospheric processes (i.e., low-frequency
signals around lead time 20 years), while simultaneously cor-
recting both atmospheric and oceanic model errors (red lines)
can better capture this variation. For the oceanic streamfunc-
tion (Fig. 8c), solely correcting oceanic errors (cyan lines)
causes a phase change compared to the truth. However, the
phase of the other models still matches the truth, with some
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Figure 5. Spatial distributions of correlation and RMSE-SS at prediction lead day 10 for atmospheric variables. Panels (a)—(d) show results
from the dynamical climate model: (a) correlation between predicted and observed atmospheric temperature; (b) correlation for atmospheric
streamfunction; (¢) RMSE-SS for atmospheric temperature; and (d) RMSE-SS for atmospheric streamfunction. Panels (e)-(h) show cor-
responding results from the hybrid model. The black dot indicates the correlation and RMSE-SS does not exceed the 95 % significance
test.
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Figure 6. Spatial distributions of correlation and RMSE-SS at prediction lead year 40 for oceanic variables. Panels (a)-(d) show results from
the dynamical climate model: (a) correlation between predicted and observed oceanic temperature; (b) correlation for oceanic streamfunction;
(¢) RMSE-SS for oceanic temperature; and (d) RMSE-SS for oceanic streamfunction. Panels (e)—(h) show corresponding results from the
hybrid model. The black dot indicates the correlation and RMSE-SS does not exceed the 95 % significance test.

differences in magnitude and timing. For oceanic tempera-
ture (Fig. 8d), correcting only atmospheric errors leads to
the largest deviation from the truth (grey lines) in the first

4 Summary and discussions

20 years, which is similar to the dynamical climate model.
Correcting the oceanic errors is better, but still poorer than
correcting both atmospheric and oceanic errors (red lines),
which leads to predictions very close to the truth.

In summary, for short-term atmospheric predictions, cor-
recting atmospheric model errors yields better results, while
for long-term simulations, correcting both oceanic and atmo-
spheric errors provides the best predictions.
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In this study, we applied a method to online correct
the error in a simplified atmosphere-ocean coupled model
(MAOOAM). The errors in the MAOOAM setup stem from
resolution limitations in the atmospheric component. We
constructed a data-driven predictor of dynamical climate
model error with ML techniques and integrated it with
the dynamical climate model, creating a hybrid statistical-
dynamical model. By incorporating the model error correc-
tion through the hybrid model, we significantly enhanced the
prediction skills for both atmospheric and oceanic variables
at different lead times in both spectral and physical space.
This approach allowed us to mitigate the limitations of the
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dynamical climate model and achieve more accurate climate
predictions.

This study also examined the respective impacts of cor-
recting atmospheric and oceanic model errors on prediction
skill. Our results indicate that short-term atmospheric predic-
tions are primarily influenced by atmospheric model errors,
while correcting oceanic errors alone has a limited effect
(e.g., Balmaseda and Anderson, 2009). For long-term ocean
prediction, correcting atmospheric errors is essential due to
their role in surface forcing, while correcting oceanic errors
plays a more critical role in predicting ocean temperature. It
is worth noting that in our experiment setup, the ocean com-
ponent is perfect, and its prediction errors primarily come
from the errors in the atmospheric component. However, cor-
recting the ocean model errors can influence the atmosphere
through the coupling between the ocean and the atmosphere.
Although the experimental setup is not ideal, our results still
provide some insights into the relative importance of oceanic
error correction for the prediction on different time scales.

This study serves as a proof of concept, demonstrating the
potential of using ML to learn and correct errors in dynami-
cal climate models, thereby enhancing their prediction skills.
Although conducted in the simplified atmosphere-ocean cou-
pled model MAOOAM, this study contributes to the under-
standing of the impact of correcting model errors on climate
prediction in the atmosphere-ocean coupling process. It em-
phasizes the importance of errors in different components of
coupled models and highlights how correcting errors in var-
ious components can improve predictions on different time
scales. Future applications involve applying this method to
realistic climate models, which are inherently more complex
than MAOOAM, and exploring the prediction skills under
such conditions.
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