Articles | Volume 32, issue 1
https://doi.org/10.5194/npg-32-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-32-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fractal analysis of geomagnetic data to decipher pre-earthquake processes in the Andaman–Nicobar region, India
Rahul Prajapati
CORRESPONDING AUTHOR
Geomagnetism Group, CSIR-National Geophysical Research Institute, Hyderabad 500007, India
Kusumita Arora
Geomagnetism Group, CSIR-National Geophysical Research Institute, Hyderabad 500007, India
Related authors
Rahul Prajapati and Kusumita Arora
EGUsphere, https://doi.org/10.21203/rs.3.rs-3506121/v1, https://doi.org/10.21203/rs.3.rs-3506121/v1, 2024
Preprint archived
Short summary
Short summary
The enhancement or anomalies in the geomagnetic field from the very seismically active region of Andaman-Nicobar observed in the diurnal ratio (DR) and polarization ratio (PR) indicate EM signatures from pre-processes of earthquakes in lithosphere. The significant enhancements show the success rate of around 78 % and an average of 18 days prior to the earthquake. A long-term data and more stations may provide more insights in physical processes of Earth’s subsurface, and range of detectability.
Rahul Prajapati and Kusumita Arora
EGUsphere, https://doi.org/10.21203/rs.3.rs-3506121/v1, https://doi.org/10.21203/rs.3.rs-3506121/v1, 2024
Preprint archived
Short summary
Short summary
The enhancement or anomalies in the geomagnetic field from the very seismically active region of Andaman-Nicobar observed in the diurnal ratio (DR) and polarization ratio (PR) indicate EM signatures from pre-processes of earthquakes in lithosphere. The significant enhancements show the success rate of around 78 % and an average of 18 days prior to the earthquake. A long-term data and more stations may provide more insights in physical processes of Earth’s subsurface, and range of detectability.
Nelapatla Phani Chandrasekhar, Sai Vijay Kumar Potharaju, Kusumita Arora, Chandra Shakar Rao Kasuba, Leonid Rakhlin, Sergey Tymoshyn, Laszlo Merenyi, Anusha Chilukuri, Jayashree Bulusu, and Sergey Khomutov
Geosci. Instrum. Method. Data Syst., 6, 547–560, https://doi.org/10.5194/gi-6-547-2017, https://doi.org/10.5194/gi-6-547-2017, 2017
Short summary
Short summary
This work presents the progressive steps which led to the successful setup of such measurements at the new magnetic observatory in Choutuppal (CPL) of CSIR-NGRI, Hyderabad, India. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.
Cited articles
Anusha, E., Arora, K., Nagarajan, N., and Abdul Azeez, K. K.: Constraints on the configuration of Andaman-Nicobar Subduction zone from EM modeling, Tectonophysics, 792, 228575, https://doi.org/10.1016/j.tecto.2020.228575, 2020.
Babu, S. S. and Unnikrishnan, K.: Analysis of fractal properties of horizontal component of Earth's magnetic field of different geomagnetic conditions using MFDFA, Adv. Sp. Res., 72, 2391–2405, 2023.
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality, Phys. Rev. A, 38, 364, https://doi.org/10.1103/PhysRevA.38.364, 1988.
Barnsley, M. F., Elton, J., Hardin, D., and Massopust, P.: Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20, 1218–1242, 1989.
Bella, J., Brodsky, B., and Berman, H. M.: Hydration structure of a collagen peptide, Structure, 3, 893–906, 1995.
Borovsky, J. E.: Magnetospheric plasma systems science and solar wind plasma systems science: The plasma-wave interactions of multiple particle populations, Front. Astron. Sp. Sci., 8, 780321, https://doi.org/10.3389/fspas.2021.780321, 2021.
Bulusu, J., Arora, K., Singh, S., and Edara, A.: Simultaneous electric, magnetic and ULF anomalies associated with moderate earthquakes in Kumaun Himalaya, Nat. Hazards, 116, 3925–3955, https://doi.org/10.1007/s11069-023-05844-y, 2023.
Chadha, R. K., Singh, C., and Shekar, M.: Transient changes in well-water level in bore wells in Western India due to the 2004 MW 9.3 Sumatra Earthquake, Bull. Seismol. Soc. Am., 98, 2553–2558, 2008.
Chen, C. C., Wang, W. C., Chang, Y. F., Wu, Y. M., and Lee, Y. H.: A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. J. Int., 167, 1215–1219, https://doi.org/10.1111/j.1365-246X.2006.03230.x, 2006.
Chen, Y.: Characterizing growth and form of fractal cities with allometric scaling exponents, Discret. Dyn. Nat. Soc., 2010, 194715, https://doi.org/10.1155/2010/194715, 2010.
Chen, Y. and Zhou, Y.: Scaling laws and indications of self-organized criticality in urban systems, Chaos Soliton. Fract., 35, 85–98, https://doi.org/10.1016/j.chaos.2006.05.018, 2008.
Cheng, Q.: Fractal density and singularity analysis of heat flow over ocean ridges, Sci. Rep., 6, 19167, https://doi.org/10.1038/srep19167, 2016.
Cochran, J. R.: Morphology and tectonics of the Andaman Forearc, northeastern Indian Ocean, Geophys. J. Int., 182, 631–651, https://doi.org/10.1111/j.1365-246X.2010.04663.x, 2010.
Conti, L., Picozza, P., and Sotgiu, A.: A critical review of ground based observations of earthquake precursors, Front. Earth Sci., 9, 676766, https://doi.org/10.3389/feart.2021.676766, 2021.
Currenti, G., del Negro, C., Lapenna, V., and Telesca, L.: Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy), Nat. Hazards Earth Syst. Sci., 5, 555–559, https://doi.org/10.5194/nhess-5-555-2005, 2005.
Crampin, S., McGonigle, R., and Bamford, D.: Estimating crack parameters from observations of P-wave velocity anisotropy, Geophysics, 45, 345–360, 1980.
Dimri, V. P.: Fractal behaviour of the earth system, Springer, https://doi.org/10.1007/b137755, 2005.
Dolan, S. S., Bean, C. J., and Riollet, B.: The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs, Geophys. J. Int., 132, 489–507, https://doi.org/10.1046/j.1365-246X.1998.00410.x, 1998.
El-Nabulsi, R. A. and Anukool, W.: Fractal dimension modeling of seismology and earthquakes dynamics, Acta Mech., 233, 2107–2122, 2022.
El-Nabulsi, R. A. and Anukool, W.: Time-dependent heating problem of the solar corona in fractal dimensions: A plausible solution, Adv. Sp. Res., 74, 2510–2529, https://doi.org/10.1016/j.asr.2024.06.015, 2024.
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M., Helliwell, R. A., and Villard Jr., O. G.: Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 17, 1465–1468, 1990.
Freund, F. and Sornette, D.: Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks, Tectonophysics, 431, 33–47, 2007.
Gahalaut, V. K., Kundu, B., Laishram, S. S., Catherine, J., Kumar, A., Singh, M. D., Tiwari, R. P., Chadha, R. K., Samanta, S. K., and Ambikapathy, A.: Aseismic plate boundary in the Indo-Burmese wedge, northwest Sunda Arc, Geology, 41, 235–238, 2013.
Godano, C. and Caruso, V.: Multifractal analysis of earthquake catalogues, Geophys. J. Int., 121, 385–392, https://doi.org/10.1111/j.1365-246X.1995.tb05719.x, 1995.
Godano, C., Alonzo, M. L., and Bottari, A.: Multifractal analysis of the spatial distribution of earthquakes in southern Italy, Geophys. J. Int., 125, 901–911, https://doi.org/10.1111/j.1365-246X.1996.tb06033.x, 1996.
Gotoh, K., Akinaga, Y., Hayakawa, M., and Hattori, K.: Principal component analysis of ULF geomagnetic data for Izu islands earthquakes in July 2000, J. Atmos. Electr., 22, 1–12, https://doi.org/10.1541/jae.22.1, 2002.
Gotoh, K., Hayakawa, M., and Smirnova, N.: Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000, Nat. Hazards Earth Syst. Sci., 3, 229–236, https://doi.org/10.5194/nhess-3-229-2003, 2003.
Gvozdarev, A. and Parovik, R.: On the Relationship between the Fractal Dimension of Geomagnetic Variations at Altay and the Space Weather Characteristics, Mathematics, 11, 3449, https://doi.org/10.3390/math11163449, 2023.
Han, P., Hattori, K., Xu, G., Ashida, R., Chen, C.-H., Febriani, F., and Yamaguchi, H.: Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0), J. Asian Earth Sci., 114, 321–326, 2015.
Han, P., Hattori, K., Huang, Q., Hirooka, S., and Yoshino, C.: Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena, J. Asian Earth Sci., 129, 13–21, 2016.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H.: Textural features for image classification, IEEE Trans. Syst. Man. Cybern., SMC-3, 610–621, https://doi.org/10.1109/TSMC.1973.4309314, 1973.
Hattori, K., Serita, A., Gotoh, K., Yoshino, C., Harada, M., Isezaki, N., and Hayakawa, M.: ULF geomagnetic anomaly associated with 2000 Izu islands earthquake swarm, Japan, Phys. Chem. Earth Pt. A/B/C, 29, 425–435, 2004a.
Hattori, K., Takahashi, I., Yoshino, C., Isezaki, N., Iwasaki, H., Harada, M., Kawabata, K., Kopytenko, E., Kopytenko, Y., Maltsev, P., Korepanov, V., Molchanov, O., Hayakawa, M., Noda, Y., Nagao, T., and Uyeda, S.: ULF geomagnetic field measurements in Japan and some recent results associated with Iwateken Nairiku Hokubu earthquake in 1998, Phys. Chem. Earth, 29, 481–494, https://doi.org/10.1016/j.pce.2003.09.019, 2004b.
Hattori, K., Han, P., Yoshino, C., Febriani, F., Yamaguchi, H., and Chen, C. H.: Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies, Surv. Geophys., 34, 293–316, https://doi.org/10.1007/s10712-012-9215-x, 2013a.
Hattori, K., Han, P., Yoshino, C., Febriani, F., Yamaguchi, H., and Chen, C.-H.: Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000–2010: case studies and statistical studies, Surv. Geophys., 34, 293–316, 2013b.
Hayakawa, M., Kawate, R., Molchanov, O. A., and Yumoto, K.: Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993, Geophys. Res. Lett., 23, 241–244, 1996.
Hayakawa, M., Ito, T., and Smirnova, N.: Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993, Geophys. Res. Lett., 26, 2797–2800, https://doi.org/10.1029/1999GL005367, 1999.
Hayakawa, M., Itoh, T., Hattori, K., and Yumoto, K.: ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996, Geophys. Res. Lett., 27, 1531–1534, https://doi.org/10.1029/1999GL005432, 2000.
Hayakawa, M. and Molchanov, O. A.: Summary report of NASDA's earthquake remote sensing frontier project, Phys. Chem. Earth Pt. A/B/C, 29, 617–625, 2004.
Hayakawa, M., Ida, Y. U. I., and Gotoh, K.: Multifractal analysis for the ULF geomagnetic data during the Guam earthquake, in: IEEE 6th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, 21–24 June 2005, Saint Petersburg, Russia, 239–243, https://doi.org/10.1109/EMCECO.2005.1513113, 2005.
Hayakawa, M., Hattori, K., and Ohta, K.: Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes, Sensors, 7, 1108–1122, 2007.
Hayat, U., Barkat, A., Ali, A., Rehman, K., Sifat, S., and Iqbal, T.: Fractal analysis of shallow and intermediate-depth seismicity of Hindu Kush, Chaos Soliton. Fract., 128, 71–82, https://doi.org/10.1016/j.chaos.2019.07.029, 2019.
He, P., Wen, Y., Xu, C., Liu, Y., and Fok, H. S.: New Evidence for Active Tectonics at the Boundary of the Kashi Depression , China , from Time Series InSAR Observations Tectonophysics New evidence for active tectonics at the boundary of the Kashi Depression , China, from time series InSAR observations, Tectonophysics, 653, 140–148, https://doi.org/10.1016/j.tecto.2015.04.011, 2015.
Heavlin, W. D., Kappler, K., Yang, L., Fan, M., Hickey, J., Lemon, J., MacLean, L., Bleier, T., Riley, P., and Schneider, D.: Case-Control Study on a Decade of Ground-Based Magnetometers in California Reveals Modest Signal 24–72 hr Prior to Earthquakes, J. Geophys. Res.-Sol. Ea., 127, e2022JB024109, https://doi.org/10.1029/2022JB024109, 2022.
Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory, Physica D, 31, 277–283, 1988.
Hirata, T. and Imoto, M.: Multifractal analysis of spatial distribution of microearthquakes in the Kanto region, Geophys. J. Int., 107, 155–162, 1991.
Ida, Y., Hayakawa, M., Adalev, A., and Gotoh, K.: Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake, Nonlin. Processes Geophys., 12, 157–162, https://doi.org/10.5194/npg-12-157-2005, 2005.
Ida, Y., Yang, D., Li, Q., Sun, H., and Hayakawa, M.: Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis, Nat. Hazards Earth Syst. Sci., 8, 775–777, https://doi.org/10.5194/nhess-8-775-2008, 2008.
Ida, Y., Yang, D., Li, Q., Sun, H., and Hayakawa, M.: Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China, Nonlin. Processes Geophys., 19, 577–583, https://doi.org/10.5194/npg-19-577-2012, 2012.
Jacquin, A. E.: Fractal image coding: A review, Proc. IEEE, 81, 1451–1465, 1993.
Johnston, M. J. S., Mueller, R. J., Ware, R. H., and Davis, P. M.: Precision of geomagnetic field measurements in a tectonically active region, J. Geomagn. Geoelectr., 36, 83–95, 1984.
Kagan, Y. Y. and Knopoff, L.: Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. Int., 62, 303–320, 1980.
Keersmaecker, De. M. L., Frankhauser, P., and Thomas, I.: Using fractal dimensions for characterizing intra-urban diversity: The example of Brussels, Geogr. Anal., 35, 310–328, https://doi.org/10.1111/j.1538-4632.2003.tb01117.x, 2003.
Kiyashchenko, D., Smirnova, N., Troyan, V., and Vallianatos, F.: Dynamics of multifractal and correlation characteristics of the spatio-temporal distribution of regional seismicity before the strong earthquakes, Nat. Hazards Earth Syst. Sci., 3, 285–298, https://doi.org/10.5194/nhess-3-285-2003, 2003.
Koizumi, N., Kitagawa, Y., Matsumoto, N., Takahashi, M., Sato, T., Kamigaichi, O., and Nakamura, K.: Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan, Geophys. Res. Lett., 31, L10606, https://doi.org/10.1029/2004GL019557, 2004.
Kopytenko, Y. A., Matiashvili, T. G., Voronov, P. M., Kopytenko, E. A., and Molchanov, O. A.: Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories, Phys. Earth Planet. Inter., 77, 85–95, 1993.
Krzyszczak, J., Baranowski, P., Zubik, M., Kazandjiev, V., Georgieva, V., Cezary, S., Siwek, K., Kozyra, J., and Nieróbca, A.: Multifractal characterization and comparison of meteorological time series from two climatic zones, Theor. Appl. Climatol., 137, 1811–1824, https://doi.org/10.1007/s00704-018-2705-0, 2019.
Lashermes, B., Jaffard, S., and Abry, P.: Wavelet leader based multifractal analysis, in: Proceedings (ICASSP'05), IEEE International Conference on Acoustics, Speech, and Signal Processing, 23–23 March 2005, Philadelphia, PA, USA, iv–161, https://doi.org/10.1109/ICASSP.2005.1415970, 2005.
Leary, P.: Deep borehole log evidence for fractal distribution of fractures in crystalline rock, Geophys. J. Int., 107, 615–627, https://doi.org/10.1111/j.1365-246X.1991.tb01421.x, 1991.
Liebovitch, L. S. and Toth, T.: A fast algorithm to determine fractal dimensions by box counting, Phys. Lett. A, 141, 386–390, https://doi.org/10.1016/0375-9601(89)90854-2, 1989.
Liu, J. Y., Tsai, Y. B., Chen, S. W., Lee, C. P., Chen, Y. C., Yen, H. Y., Chang, W. Y., and Liu, C.: Giant ionospheric disturbances excited by the M 9.3 Sumatra earthquake of 26 December 2004, Geophys. Res. Lett., 33, L02103, https://doi.org/10.1029/2005GL023963, 2006.
Lopes, R. and Betrouni, N.: Fractal and multifractal analysis: a review, Med. Image Anal., 13, 634–649, 2009.
López-Casado, C., Henares, J., Badal, J., and Peláez, J. A.: Multifractal images of the seismicity in the Ibero-Maghrebian region (westernmost boundary between the Eurasian and African plates), Tectonophysics, 627, 82–97, https://doi.org/10.1016/j.tecto.2013.11.013, 2014.
Mandal, P., Mabawonku, A. O., and Dimri, V. P.: Self-organized fractal seismicity of reservoir triggered earthquakes in the Koyna-Warna seismic zone, Western India, Pure Appl. Geophys., 162, 73–90, https://doi.org/10.1007/s00024-004-2580-8, 2005.
Mandelbrot, B. B.: Fractal aspects of the iteration of z→λz(1−z) for complex λ and z, Ann. N. Y. Acad. Sci., 357, 249–259, https://doi.org/10.1111/j.1749-6632.1980.tb29690.x, 1980.
Mandelbrot, B. B.: Multifractal measures, especially for the geophysicist, Fractals Geophys., 131, 5–42, https://doi.org/10.1007/978-3-0348-6389-6_2, 1989.
Mandelbrot, B. B. and Mandelbrot, B. B.: The fractal geometry of nature, WH Freeman New York, ISBN-10 0716711869, 1982.
Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422–437, 1968.
Meng, J., Wang, C., Zhao, X., Coe, R., Li, Y., and Finn, D.: India-Asia collision was at 24 N and 50 Ma: palaeomagnetic proof from southernmost Asia, Sci. Rep., 2, 925, https://doi.org/10.1038/srep00925, 2012.
Molchan, G. and Kronrod, T.: The fractal description of seismicity, Geophys. J. Int., 179, 1787–1799, https://doi.org/10.1111/j.1365-246X.2009.04380.x, 2009.
Molchanov, O. A. and Hayakawa, M.: Generation of ULF electromagnetic emissions by microfracturing, Geophys. Res. Lett., 22, 3091–3094, https://doi.org/10.1029/95GL00781, 1995.
Molchanov, O. A., Kopytenko, Y. A., Voronov, P. M., Kopytenko, E. A., Matiashvili, T. G., Fraser-Smith, A. C., and Bernardi, A.: Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms=6.9) and Loma Prieta (Ms=7.1) earthquakes: Comparative analysis, Geophys. Res. Lett., 19, 1495–1498, 1992.
Myint, S. W.: Fractal approaches in texture analysis and classification of remotely sensed data: Comparisons with spatial autocorrelation techniques and simple descriptive statistics, Int. J. Remote Sens., 24, 1925–1947, 2003.
Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P.: Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 431, 211–220, 2007.
Panda, M. N., Mosher, C., and Chopra, A. K.: Application of wavelet transforms to reservoir data analysis and scaling, in: SPE Annual Technical Conference and Exhibition, 6–9 October 1996, Denver CO, 251–266, https://doi.org/10.2118/36516-MS, 1996.
Panda, S. K., Choudhury, S., Saraf, A. K., and Das, J. D.: MODIS land surface temperature data detects thermal anomaly preceding 8 October 2005 Kashmir earthquake, Int. J. Remote Sens., 28, 4587–4596, 2007.
Pastén, D. and Pavez-Orrego, C.: Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021, Chaos, Solitons & Fractals, 167, 113000, https://doi.org/10.1016/j.chaos.2022.113000, 2023.
Pentland, A. P.: Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6, 661–674, https://doi.org/10.1109/TPAMI.1984.4767591, 1984.
Prajapati, R. and Arora, A.: Investigation of geomagnetic field variations in search of seismo-electromagnetic emissions associated with earthquakes in subduction zone of Andaman-Nicobar, India, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-3506121/v1, 2023.
Potirakis, S. M., Hayakawa, M., and Schekotov, A.: Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (MW=9): discriminating possible earthquake precursors from space-sourced disturbances, Nat. Hazards, 85, 59–86, https://doi.org/10.1007/s11069-016-2558-8, 2017.
Rahimi-Majd, M., Shirzad, T., and Najafi, M. N.: A self-organized critical model and multifractal analysis for earthquakes in Central Alborz, Iran, Sci. Rep., 12, 8364, https://doi.org/10.1038/s41598-022-12362-7, 2022.
Rawat, G., Chauhan, V., and Dhamodharan, S.: Fractal dimension variability in ULF magnetic field with reference to local earthquakes at MPGO, Ghuttu, Geomatics, Nat. Hazards Risk, 7, 1937–1947, https://doi.org/10.1080/19475705.2015.1137242, 2016.
Rossi, G.: Fractal analysis as a tool to detect seismic cycle phases, in: Fractals and Dynamic Systems in Geoscience, Springer, 169–179, https://doi.org/10.1007/978-3-662-07304-9_13, 1994.
Roy, P. N. S. and Mondal, S. K.: Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region, J. Earth Syst. Sci., 121, 1033–1047, 2012.
Rikitake, T.: Earthquake precursors, Bull. Seismol. Soc. Am., 65, 1133–1162, 1975.
Schaefer, D. W.: Fractal models and the structure of materials, MRS Bull., 13, 22–27, 1988.
Scholz, C. H., Sykes, L. R., and Aggarwal, Y. P.: Earthquake Prediction: A Physical Basis: Rock dilatancy and water diffusion may explain a large class of phenomena precursory to earthquakes, Science, 181, 803–810, 1973.
Sethumadhav, M. S., Gunnell, Y., Ahmed, M. M., and Chinnaiah: Late Archean manganese mineralization and younger supergene manganese ores in the Anmod-Bisgod region, Western Dharwar Craton, southern India: Geological characterization, palaeoenvironmental history, and geomorphological setting, Ore Geol. Rev., 38, 70–89, https://doi.org/10.1016/j.oregeorev.2010.06.001, 2010.
Smirnova, N., Hayakawa, M., and Gotoh, K.: Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes, Phys. Chem. Earth Pt. A/B/C, 29, 445–451, 2004.
Smirnova, N. A., Kiyashchenko, D. A., Troyan, V. N., and Hayakawa, M.: Multifractal approach to study the earthquake precursory signatures using the ground-based observations, Rev. Appl. Phys., 2.3, 58–67, 2013.
Sridharan, M. and Ramasamy, A. M. S.: Fractal analysis for geomagnetic secular variations, J. Indian Geophys. Union, 10, 175–185, 2006.
Stanica, D. A. and Stănică, D.: ULF pre-seismic geomagnetic anomalous signal related to Mw 8.1 offshore chiapas earthquake, Mexico on 8 September 2017, Entropy, 21, 29, https://doi.org/10.3390/e21010029, 2019.
Swan, S. W. and Harris, S. K.: The Island of Guam earthquake of august 8, 1993, National Center for Earthquake Engineering Research, Taipei, 1993.
Telesca, L., Colangelo, G., Lapenna, V., and Macchiato, M.: Monofractal and multifractal characterization of geoelectrical signals measured in southern Italy, Chaos Soliton. Fract., 18, 385–399, https://doi.org/10.1016/S0960-0779(02)00655-0, 2003.
Telesca, L., Lapenna, V., Vallianatos, F., Makris, J., and Saltas, V.: Multifractal features in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece, Chaos Soliton. Fract., 21, 273–282, https://doi.org/10.1016/j.chaos.2003.10.020, 2004.
Turcotte, D. L.: Fractals in geology and geophysics, Pure Appl. Geophys., 131, 171–196, 1989.
Turcotte, D. L.: Fractals and chaos in geology and geophysics, Cambridge University Press, ISBN 9780521567336, 1997.
Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y., Gotoh, K., Akinaga, Y., and Tanaka, H.: Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan, P. Natl. Acad. Sci. USA, 99, 7352–7355, 2002.
Virk, H. S., Walia, V., and Kumar, N.: Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India, J. Geodyn., 31, 201–210, 2001.
Wang, W., Cheng, Q., Tang, J., Pubuciren, Song, Y., Li, Y., and Liu, Z.: Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China, Geochemistry Explor. Environ. Anal., 17, 261–276, 2017.
Wendt, H.: Contributions of Wavelet Leaders and Bootstrap to Multifractal Analysis: Images, Estimation Performance, Dependence Structure and Vanishing Moments, Confidence Intervals and Hypothesis Tests, Signal and Image processing, Ecole normale supérieure de lyon – ENS LYON, 2008, 1–292, 2008.
Wendt, H., Abry, P., and Jaffard, S.:Bootstrap for Empirical Multifractal Analysis, IEEE Signal Processing Magazine, 24, 38–48, https://doi.org/10.1109/MSP.2007.4286563, 2007.
Werner, D. H., Haupt, R. L., and Werner, P. L.: Fractal antenna engineering: The theory and design of fractal antenna arrays, IEEE Antennas Propag. Mag., 41, 37–58, 1999.
Weszka, J. S., Dyer, C. R., and Rosenfeld, A.: A comparative study of texture measures for terrain classification, IEEE Trans. Syst. Man. Cybern., SMC-6, 269–285, https://doi.org/10.1109/TSMC.1976.5408777, 1976.
Xu, T., Moore, I. D., and Gallant, J. C.: Fractals, fractal dimensions and landscapes – a review, Geomorphology, 8, 245–262, 1993.
Xu, G., Han, P., Huang, Q., Hattori, K., Febriani, F., and Yamaguchi, H.: Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0), J. Asian Earth Sci., 77, 59–65, https://doi.org/10.1016/j.jseaes.2013.08.011, 2013.
Yang, H., Pan, H., Wu, A., Luo, M., Konaté, A. A., and Meng, Q.: Application of well logs integration and wavelet transform to improve fracture zones detection in metamorphic rocks, J. Pet. Sci. Eng., 157, 716–723, https://doi.org/10.1016/j.petrol.2017.07.057, 2017.
Yen, H.-Y., Chen, C.-H., Yeh, Y.-H., Liu, J.-Y., Lin, C.-R., and Tsai, Y.-B.: Geomagnetic fluctuations during the 1999 Chi-Chi earthquake in Taiwan, Earth Planets Space, 56, 39–45, https://doi.org/10.1186/BF03352489, 2004.
Short summary
Seismo-electromagnetic (SEM) signals emitted prior to major earthquakes show promise as candidates for short-term earthquake prediction. Analyzing the frequency characteristics of SEM signals provides insights into pre-earthquake processes in the focal zone, such as microfracturing and electrokinetic phenomena. The combined application of fractal and multifractal methods proves to be an effective tool for analyzing these complex signals.
Seismo-electromagnetic (SEM) signals emitted prior to major earthquakes show promise as...