Articles | Volume 31, issue 3
https://doi.org/10.5194/npg-31-409-2024
https://doi.org/10.5194/npg-31-409-2024
Research article
 | Highlight paper
 | 
19 Sep 2024
Research article | Highlight paper |  | 19 Sep 2024

Representation learning with unconditional denoising diffusion models for dynamical systems

Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand

Related authors

Multivariate state and parameter estimation with data assimilation applied to sea-ice models using a Maxwell elasto-brittle rheology
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024,https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023,https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Ensemble-based data assimilation of atmospheric boundary layer observations improves the soil moisture analysis
Tobias Sebastian Finn, Gernot Geppert, and Felix Ament
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-672,https://doi.org/10.5194/hess-2020-672, 2021
Revised manuscript not accepted
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Alain, G. and Bengio, Y.: What Regularized Auto-Encoders Learn from the Data-Generating Distribution, J. Mach. Learn. Res., 15, 3563–3593, 2014. a
Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., and Ott, E.: A Machine Learning-Based Global Atmospheric Forecast Model, Geophys. Res. Lett., 47, e2020GL087776, https://doi.org/10.1029/2020GL087776, 2020. a
Arnold, H. M., Moroz, I. M., and Palmer, T. N.: Stochastic Parametrizations and Model Uncertainty in the Lorenz '96 System, Philos. T. Roy. Soc. A, 371, 20110479, https://doi.org/10.1098/rsta.2011.0479, 2013. a
Bao, F., Zhang, Z., and Zhang, G.: A Score-based Nonlinear Filter for Data Assimilation, arXiv [preprint], https://doi.org/10.48550/arXiv.2306.09282, 2023. a
Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., and Babenko, A.: Label-Efficient Semantic Segmentation with Diffusion Models, arXiv [preprint], https://doi.org/10.48550/arXiv.2112.03126, 2022. a
Download
Executive editor
This paper tests the ability of Artificial Intelligence methods, and more specifically Deep Learning, to eliminate the Gaussian noise that disturbs the data of a dynamic system. The authors demonstrate this using a highly chaotic model as a hard test case.
Short summary
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963 system and demonstrate that they learn an internal representation of the system. We make use of this learned representation and the pre-trained model in two downstream tasks: surrogate modelling and ensemble generation. For both tasks, the diffusion model can outperform other more common approaches. Thus, we see a potential of representation learning with diffusion models for dynamical systems.