This paper tests the ability of Artificial Intelligence methods, and more specifically Deep Learning, to eliminate the Gaussian noise that disturbs the data of a dynamic system. The authors demonstrate this using a highly chaotic model as a hard test case.
This paper tests the ability of Artificial Intelligence methods, and more specifically Deep...
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963 system and demonstrate that they learn an internal representation of the system. We make use of this learned representation and the pre-trained model in two downstream tasks: surrogate modelling and ensemble generation. For both tasks, the diffusion model can outperform other more common approaches. Thus, we see a potential of representation learning with diffusion models for dynamical systems.
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963...