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Abstract. We propose denoising diffusion models for data-driven representation learning of dynamical systems.
In this type of generative deep learning, a neural network is trained to denoise and reverse a diffusion process,
where Gaussian noise is added to states from the attractor of a dynamical system. Iteratively applied, the neural
network can then map samples from isotropic Gaussian noise to the state distribution. We showcase the potential
of such neural networks in proof-of-concept experiments with the Lorenz 1963 system. Trained for state gener-
ation, the neural network can produce samples that are almost indistinguishable from those on the attractor. The
model has thereby learned an internal representation of the system, applicable for different tasks other than state
generation. As a first task, we fine-tune the pre-trained neural network for surrogate modelling by retraining its
last layer and keeping the remaining network as a fixed feature extractor. In these low-dimensional settings, such
fine-tuned models perform similarly to deep neural networks trained from scratch. As a second task, we apply
the pre-trained model to generate an ensemble out of a deterministic run. Diffusing the run, and then iteratively
applying the neural network, conditions the state generation, which allows us to sample from the attractor in
the run’s neighbouring region. To control the resulting ensemble spread and Gaussianity, we tune the diffusion
time and, thus, the sampled portion of the attractor. While easier to tune, this proposed ensemble sampler can
outperform tuned static covariances in ensemble optimal interpolation. Therefore, these two applications show
that denoising diffusion models are a promising way towards representation learning for dynamical systems.

1 Introduction

The ultimate goal of generative modelling is to generate sam-
ples from the distribution that has generated given training
samples. Given this goal, we can train deep neural networks
(NNs) for unconditional generation of states from the attrac-
tor of a dynamical system. Their further use beyond gener-
ating states remains ambiguous. Here, we reason that they
learn an internal representation of the attractor. Instantiat-
ing denoising diffusion models (DDMs) for the Lorenz 1963
system (Lorenz, 1963), we use the learned representation in
downstream tasks, namely surrogate modelling and ensem-
ble generation.

DDMs are trained to imitate the process of generating
samples from the attractor of a dynamical system (Y. Song
et al., 2021), as depicted in Fig. 1a. During training, the avail-
able state samples are diffused by a pre-defined Gaussian dif-

fusion kernel, and the NN is trained to denoise the diffused
samples (Sohl-Dickstein et al., 2015; Ho et al., 2020). After
training, we can iteratively apply the so-trained NN to map
samples from a normal distribution to samples like drawn
from the attractor. This generation process is expected to be
successful if there is an invariant state distribution on the
system’s attractor, which exists for ergodic chaotic dynam-
ics. Akin to integrating a stochastic differential equation in
(pseudo) time, the NN defines the integrated dynamical sys-
tem.

Using this correspondence between dynamical systems
and DDMs, we can replace the drift in the diffusion pro-
cess by an integration of a real dynamical system (Holzschuh
et al., 2023). The denoising process can then invert and in-
tegrate the system backward in physical time. Furthermore,
DDMs can emulate fluid flows as simulated by computa-
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Figure 1. (a) We pre-train a neural network as a denoising diffu-
sion model to generate states from the Lorenz 1963 system: during
the diffusion process, Gaussian noise is increasingly added to the
states until all information contained in the samples is completely
destroyed. A neural network is trained to revert the process and to
denoise diffused state samples. This denoising neural network can
then generate new states from samples of a normal distribution.
(b) We also use the denoising diffusion models for downstream
tasks, different from state generation. We fine-tune the denoising
network for surrogate modelling (left), and we apply the denoising
diffusion model to generate an ensemble out of a deterministic run,
for example, for data assimilation (right).

tional fluid dynamics (Yang and Sommer, 2023) and estimate
a spatial–temporal prediction of such flows (Cachay et al.,
2023). DDMs are additionally connected to the Schrödinger
Bridge and can be designed to map between arbitrary prob-
ability distributions (Bortoli et al., 2021; Chen et al., 2023).
Notably, the Schrödinger Bridge has been already exploited
for discrete- and continuous-time data assimilation (Reich,
2019).

Generative modelling is a special case of self-supervised
learning with the task of generating new state samples. Typ-
ically used for pre-training and representation learning, one
of the promises of unsupervised and self-supervised learn-
ing is to learn deep NNs from large, heterogeneous datasets
without the explicit need of supervision. Such methods al-
low the use of NNs with millions of parameters for specific
geoscientific problems (Hoffmann and Lessig, 2023; Nguyen
et al., 2023), where often not enough labelled data are avail-
able to train deep NNs from scratch. Since training deep
generative models remains difficult yet, generative training
is less often used for pre-training and representation learn-
ing of high-dimensional systems than other methods like
contrastive learning (e.g. Chen et al., 2020). DDMs offer a

method for stable generative training and can generate high-
quality samples (Dhariwal and Nichol, 2021; Nichol and
Dhariwal, 2021). Hence, they have the potential to pave the
way towards representation learning with generative models
for high-dimensional systems.

DDMs are directly linked to denoising autoencoders (Vin-
cent et al., 2008, 2010). These autoencoders train a NN to
predict cleaned state samples out of noised ones; the NN
must learn relevant features about the state distribution itself.
These features are then useable in tasks different from de-
noising (Bengio et al., 2013; Alain and Bengio, 2014). The
idea to reconstruct from corrupted data is further the lead-
ing paradigm in pre-training large language models (Rad-
ford et al., 2018; Devlin et al., 2019; Dong et al., 2019)
and, recently, also used for high-dimensional image data with
masked autoencoders (He et al., 2021). Based on these ideas,
DDMs that are trained to generate images can extract useful
features for downstream tasks (e.g. Baranchuk et al., 2022;
Zhang et al., 2022; Xiang et al., 2023). Concurrently to this
study, Mittal et al. (2023) and Yang and Wang (2023) pro-
pose to directly use DDMs for representation learning from
images. However, to our knowledge, we are the first introduc-
ing these models for representation learning from dynamical
systems.

In our first downstream task, we follow along these lines
and apply the denoising NN as a feature extractor for surro-
gate modelling, as schematically shown in Fig. 1b. Initially
pre-trained to generate states, we fine-tune the NN by replac-
ing its last layer by a linear regression or a shallow NN. This
way, we achieve a similar performance to that of deep neural
networks trained from scratch.

In our second downstream task, we apply DDMs to gener-
ate state ensembles. Ensemble forecasting is one of the cor-
nerstones for the recent advances in numerical weather pre-
diction and data assimilation (Bauer et al., 2015), yet it is
much more expensive than running a deterministic forecast.
Ensemble optimal interpolation approaches (Evensen, 2003;
Oke et al., 2002) lower the computational costs by apply-
ing climatological ensembles to assimilate observations into
a deterministic forecast. The ensemble can be either directly
drawn from the climatology or constructed by analogous
methods (Lguensat et al., 2017; Tandeo et al., 2023). Another
method to generate an ensemble for data assimilation would
be to make use of the knowledge about the system’s error
propagation, in form of singular vectors (Molteni et al., 1996)
or bred vectors (Toth and Kalnay, 1993), as similarly used to
initialize ensemble weather forecasts (Buizza et al., 2005) or
sub-seasonal forecasts (Demaeyer et al., 2022). Alternatively,
we can generate the ensemble members from the latent space
of a variational autoencoder (VAE; Grooms, 2021; Yang and
Grooms, 2021; Grooms et al., 2023).

In fact, DDMs are a type of (hierarchical) VAE with an an-
alytically known encoding distribution (Kingma et al., 2021;
Luo, 2022). Thus, the latent space of DDMs is similar to the
latent space of VAEs, and image data can be interpolated in
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and reconstructed from this latent space (J. Song et al., 2021).
Mapping through this latent space by diffusing and denois-
ing, we can perform image-to-image translation without the
need for paired data (Meng et al., 2022).

Instead of image-to-image translation, we can also gener-
ate an ensemble out of a deterministic run with a DDM. We
partially diffuse the run for a pre-defined amount of time.
The mapping from state sample to diffused sample is inher-
ently stochastic, and we can generate many diffused ensem-
ble members. Afterwards, we iteratively apply the denoising
NN to map the diffused ensemble back into state space. Vary-
ing the amount of time, we have control over the uncertainty
in the generated ensemble. We apply this ensemble sampling
method in ensemble optimal interpolation to update a deter-
ministic forecast. We demonstrate that so-generated ensem-
ble members can outperform members drawn from tuned cli-
matological covariances for ensemble optimal interpolation.

In concurrent work from Rozet and Louppe (2023), the
state generation with DDMs is guided towards observations.
However, their prior distribution is defined by the climatol-
ogy of their DDM, unconditional from any forecast run. To
condition the denoising diffusion model on forecasts, Bao
et al. (2023) retrain the network for each state update step.
This retraining increases the computational costs of the data
assimilation scheme and needs many ensemble samples. By
contrast, we condition the ensemble generation on a deter-
ministic run using partial diffusion without the need to retrain
the model.

We elucidate on the theory of denoising diffusion models
in Sect. 2, where we additionally elaborate on different op-
tions for sampling and parameterizations of the NN output. In
Sect. 3, we introduce our two methods to use the learned in-
ternal representation. There, we illustrate how the denoising
NN is applied as a feature extractor and how DDMs can gen-
erate an ensemble out of a deterministic run. Our experiments
with the Lorenz 1963 system are described and analysed in
Sect. 4. We summarize this work and discuss its broader im-
pacts in Sect. 5, and we briefly conclude in Sect. 6.

2 Denoising diffusion models

Our goal is to generate state samples x as drawn from the
attractor of a dynamical system. The distribution of states on
the attractor is described by pdata(x). This state distribution
is unknown, and, instead, we rely on k existing samples x1:k .

To generate state samples, we train deep neural networks
(NNs) as denoising diffusion models (DDMs). Their general
idea for training is to progressively add noise to the training
samples in a Gaussian diffusion process. This introduces a
pseudo-time and results in noised samples zτ at a given step
τ . The NN fθ (zτ ,τ ) with its parameters θ is trained to re-
verse the diffusion process and to denoise the samples for a
single step. One denoising step can be described as follows:

pθ (zτ−1 | zτ )=N
(
µθ (zτ ,τ ),6τ

)
, (1)

here defined as a Gaussian distribution with mean µθ (zτ ,τ )
as a function of the NN output and 6τ as the pseudo-time-
dependent covariance matrix. We will further discuss the pa-
rameterization of the NN output in Sect. 2.4.

After the NN is trained, we can start to sample from a
known prior distribution p(zT ) and iteratively apply the NN
for T steps to denoise these samples towards the state space.
This iterative sampling scheme results in the trajectory z0:T
with its joint distribution,

pθ (z0:T )= p(zT )
T∏
τ=1

pθ (zτ−1 | zτ ). (2)

In the following, we define the algorithm step by step by
briefly explaining the diffusion process in Sect. 2.1 and the
training of the denoising network in Sect. 2.2. We introduce
two different sampling schemes in Sect. 2.3 and different pa-
rameterizations of the NN output in Sect. 2.4.

2.1 Gaussian diffusion process

The diffusion process is defined in terms of intermediate la-
tent (noised) states zτ with τ ∈ [0,T ] as discrete pseudo-time
steps. As these latent states are noised state samples, they still
lie in state space, and we define z0 = x.

The diffusion process progressively adds small Gaussian
noise, ετ ∼N (0,σ 2

τ I), to the states, where στ describes the
amplitude of the added noise at pseudo-time τ . Since the
noise accumulates, the variance of the states would increase
with pseudo-time. Instead, here we use a variance-preserving
formulation, where the signal is progressively replaced by
noise. The signal magnitude is decreased in pseudo-time
1≥ ατ−1 > ατ ≥ 0 with στ =

√
1−ατ , such that the vari-

ance remains the same for all pseudo-time steps, if the state
samples are normalized. The function that defines the sig-
nal magnitude as a function of the pseudo-time step is called
noise scheduler. To simplify the derivation in the following,
we assume a given noise scheduling and show the definitions
of the two noise schedulers used in Appendix C and refer to
Sect. 3.2 of Nichol and Dhariwal (2021) for a more detailed
discussion.

The transition of the latent state zτ from pseudo-time τ−1
to pseudo-time τ with τ ≥ τ − 1 is then given as

q(zτ | zτ−1)=N
(√
α′τzτ−1, (1−α′τ )I

)
, (3)

with the relative signal magnitude α′τ =
ατ
ατ−1

. Using the ad-
ditive property of Gaussian distributions, the distribution of
the latent state zτ at step τ can be directly defined given a
state sample x and a signal magnitude ατ ,

q(zτ | x)=N
(
√
ατx, (1−ατ )I

)
. (4)

Setting the signal magnitude at the last step near zero,
αT ≈ 0, the signal vanishes, and the latent states converge
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towards a normal Gaussian distribution, which then also de-
fines our prior distribution for the diffusion process,

q(zT | x)= p(zT )=N (0,I). (5)

Given the transition distribution from Eq. (3), the joint distri-
bution of the trajectory for the diffusion process forward in
pseudo-time reads

q(z1:T | x)=
T∏
t=0
q(zτ | zτ−1). (6)

The NN is then trained to reverse a single step of this tra-
jectory, such that we can start from the prior distribution,
Eq. (5), and generate the trajectory without needing access
to the state sample x, as we will see in the following section.

2.2 Training procedure

During training, we sample a latent state from the trajec-
tory by drawing a state x ∼ pdata(x); noise ε ∼N (0,I); and
a pseudo-time τ , which specifies the signal magnitude αt .
Making use of the reparameterization property of Gaussian
distributions, we can write the latent state drawn from its dis-
tribution q(zτ | x) as

zτ =
√
ατx+

√
(1−ατ )ε. (7)

To describe the analytical denoising step from τ to τ − 1,
we use Bayes’ theorem given the definition of the diffusion
process, as defined in Eq. (3) and Eq. (4), and a known state
sample x,

q(zτ−1 | zτ ,x)=N
(
µ(zτ ,x),6τ

)
(8a)

with µ(zτ ,x)=

√
α′τ (1−ατ−1)

1−ατ
zτ +

√
ατ−1(1−α′τ )

1−ατ
x (8b)

and 6τ =
(1−α′τ )(1−ατ−1)

1−ατ
I. (8c)

Note that, during generation, the state x is unknown, and we
have to approximate Eq. (8b) to generate data, as we discuss
in the following.

The diffusion and the denoising process are defined over
several signal magnitudes. We train one NN for all signal
magnitudes and use the pseudo-time as additional input into
the NN. Here, we parameterize the NN to predict the drawn
noise, ε̂θ (zτ ,τ )= fθ (zτ ,τ ) based on the current latent state
and pseudo-time. We introduce other parameterizations in
Sect. 2.4.

To approximate the analytical denoising step from Eq. (8a)
with the NN, we have to specify the unknown state x by the
NN output. Using the predicted noise, the latent state can
be directly projected onto the state using Tweedie’s formula
(Efron, 2011),

x̂θ (zτ ,τ )= E
[
p(x | zτ )

]
=

1
√
ατ

(
zτ −

√
(1−ατ ) ε̂θ (zτ ,τ )

)
. (9)

Replacing the state by this prediction in the mean function,
Eq. (8b), we have completely specified the denoising distri-
bution with predicted quantities,

pθ (zτ−1 | zτ )= q
(
zτ−1 | zτ , x̂θ (zτ ,τ )

)
. (10)

The goal is to make the approximation, Eq. (10), as close
as possible to the analytical denoising step from Eq. (8a) us-
ing the Kullback–Leibler divergence between the approxima-
tion and the analytical step,

DKL
(
q(zτ−1 | zτ ,x)‖pθ (zτ−1 | zτ )

)
= Ezτ−1∼q(zτ−1|zτ ,x)[

logq(zτ−1 | zτ ,x)− logpθ (zτ−1 | zτ )
]
. (11)

By definition, the covariance of the approximated and ana-
lytical denoising step match, and the Kullback–Leibler di-
vergence, Eq. (11), reduces to a mean-squared error loss
between the predicted noise and the used randomly drawn
noise,

DKL
(
q(zτ−1 | zτ ,x)‖pθ (zτ−1 | zτ )

)
∝

1
w(τ )
‖̂ε(zτ ,τ )− ε‖22, (12)

with the weighting factor w(τ )= ατ
1−ατ

as the signal-to-noise
ratio. In practice, this weighting factor is neglected (Ho et al.,
2020), which leads to a simplified loss function.

The NN is trained for all pseudo-time steps to achieve
its optimal parameters θ?. For a single training step, we
minimize the expectation of the simplified loss function of
Eq. (12),

θ? = argmin
θ

Ex∼pdata(x),ε∼N (0,I),τ∼U (1,T )[
‖̂ε(
√
ατx+

√
(1−ατ )ε,τ )− ε‖22

]
, (13)

where U(1,T ) is a uniform distribution with 1 and T as
bounds. Equation (12) can be derived from the so-called ev-
idence lower bound (Kingma et al., 2021; Luo et al., 2023),
and we optimize a weighted lower bound to the unknown dis-
tribution pdata(x) of the states on the attractor with Eq. (13).
Consequently, we can expect that the better the prediction of
the NN, the nearer the generated state samples to the attractor
of the dynamical system are.

2.3 Sampling from the denoising process

After training the NN, we can use it to sample from the
denoised state trajectory distribution pθ (z0:T ), defined in
Eq. (2). To sample from the distribution, we can start sam-
pling from the prior distribution εT ∼N (0,I) and then sam-
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ple for each subsequent denoising step from Eq. (10),

zτ−1(zτ ,τ )=

√
α′τ (1−ατ−1)

1−ατ
zτ +

√
ατ−1(1−α′τ )

1−ατ

x̂θ (zτ ,τ )+

√
(1−α′τ )(1−ατ−1)

1−ατ
ε, ε ∼N (0,I). (14)

This sampling process is inherently stochastic and called the
denoising diffusion probabilistic model (DDPM; Ho et al.,
2020) in the following.

To reduce the magnitude of randomness during training,
the sampling process can be made deterministic (J. Song
et al., 2021; Y. Song et al., 2021). This deterministic sam-
pling scheme is called the denoising diffusion implicit model
(DDIM; J. Song et al., 2021), and its only source of random-
ness is the sampling from the prior distribution. The marginal
distribution of the generated state samples remains the same,
and the model can still be trained by the same loss function
as defined in Eq. (13).

In DDIMs, the noise ετ drawn from a Gaussian distribu-
tion is replaced by the predicted noise from the NN ε̂(zτ ,τ ),
also used to predict the state x̂θ (zτ ,τ ). We can introduce an
additional factor η ∈ [0,1], which determines the random-
ness in the sampling process. Given this factor, we can sam-
ple from the denoising steps as follows:

zτ−1 =
√
ατ−1x̂θ (zτ ,τ )+

√
(1−ατ−1− σ 2

τ )̂ε(zτ ,τ )

+ στ ε, ε ∼N (0,I) (15a)

στ = η

√
1−ατ−1

1−ατ

√
1−

ατ

ατ−1
. (15b)

The factor interpolates between purely deterministic sam-
pling with DDIMs, η = 0, and fully stochastic samples, η =
1. Sampling with Eq. (14) has an even larger randomness
than η = 1. Note, sampling with η = 1 and the sampling with
Eq. (14) introduced earlier are both DDPMs. For simplicity,
we refer to Eq. (14) as DDPM, whereas we call sampling
with η = 1 a stochastic DDIM scheme. Throughout the pa-
per, most of the time we sample with Eq. (14), whereas we
also perform experiments with DDIM schemes.

2.4 Output parameterizations

Usually, the output of the NN is parameterized as prediction
ε̂θ (zτ ,τ )= fθ (zτ ,τ ) of the noise (Ho et al., 2020). Here,
we introduce two additional parameterizations and discuss
their advantages and disadvantages. In our implementation,
a different parameterization also changes the loss function
for the NN. The change in the loss function then modifies
the implied weighting of the Kullback–Leibler divergence in
Eq. (12), as shown in Fig. 2a.

In Eq. (9), we have defined the predicted state as a function
of the predicted noise. Instead, we can also directly predict

Figure 2. Comparison between different output parameterizations
for denoising diffusion models. (a) The logarithm of the weighting
logw(τ ) in the Kullback–Leibler divergence in Eq. (12) as a func-
tion of pseudo-time step τ , with cosine noise scheduling (see also
Appendix C). (b) Empirical probability density functions (PDFs)
that are targeted during a v prediction for the x component of the
Lorenz 1963 model and several pseudo-time steps. For a pseudo-
time step of 0, the PDF corresponds to the prior, and for a pseudo-
time step of T = 1000, it corresponds to the state.

the state x̂θ (zτ ,τ )= fθ (zτ ,τ ). With this parameterization,
we minimize the mean-squared error of the predicted state to
the true state during training, which gives a constant weight-
ing of the Kullback–Leibler divergence, shown as a red curve
in Fig. 2a.

The NN is trained to split the signal and noise from a given
latent state. There, we could directly predict either the state
(signal) or the noise. Nonetheless, we can alternatively define
a combination of both as the target (Salimans and Ho, 2022),

v(x,ε,τ )=
√
ατ ε−

√
(1−ατ )x. (16)

Predicting v̂(x,ε,τ )= fθ (zτ ,τ ) and minimizing the mean-
squared error between prediction and true v interpolates the
weighting between noise (τ = 0) and state (τ = 1000) pre-
diction, shown as a black curve in Fig. 2a.

Since the state is needed in the denoising step, Eq. (8a),
predicting the state is a straightforward parameterization for
training and applying the NN. However, the distribution of
the state might be non-Gaussian and multimodal, as shown
in Fig. 2b, such that the Gaussian approximation for the loss
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function could be inadequate. By contrast, the noise is drawn
from a Gaussian distribution, and the mean-squared error is
the correct loss function, statistically speaking. Additionally,
Ho et al. (2020) have shown that predicting the noise leads to
better results than directly predicting the state.

However, predicting the noise can be highly unstable for
low signal-to-noise ratios (Salimans and Ho, 2022); the v
prediction weights the loss function differently and circum-
vents these instabilities. As the target is a combination be-
tween state and noise, the target distribution shifts from
non-Gaussian state prediction for small signal magnitudes
to Gaussian noise prediction for large signal magnitudes,
Fig. 2b. Consequently, the use of the v prediction can be ad-
vantageous for the training stability and the loss function,
which may improve the performance of the DDMs.

3 Downstream tasks for unconditional denoising
diffusion models

In this paper, we train DDMs to generate states that should lie
on the attractor of the dynamical system. As training data, we
integrate the equations that define the dynamical system to
produce a long state trajectory. Using each state of the trajec-
tory at discrete time as training sample, the DDM is trained
to unconditionally generate state samples. We reason that the
DDM must have learned an internal representation of the at-
tractor. In Appendix F, we analyse the extracted features of
the denoising NN and show that this representation is entan-
gled; we need all extracted features to extract information
about the attractor. In the following, we explain two different
approaches on how the unconditional DDM can be used for
downstream tasks other than pure state generation.

First, in Sect. 3.1, we demonstrate the use of the denoising
NN for transfer learning; we fine-tune it for surrogate mod-
elling. Secondly, in Sect. 3.2, we generate a state ensemble
from a deterministic forecast run with the DDM.

3.1 Transfer learning from the denoising neural network

As schematically shown in Fig. 3, our general idea of transfer
learning the NN is to remove its last layer. This last layer
combines the extracted features φ(zτ ,τ ) at a specific pseudo-
time step τ by the weights W and the bias β to the NN output
fθ (zτ ,τ )=W>φ(xτ ,τ )+β.

Since the noised states of the DDM remain in state space,
the network can be easily applied to cleaned states, instead
of working with noised states. Keeping the pseudo-time step
fixed, we can extract features φ(xt ) from a given state xt
at a physical time step t with the NN by removing its last
layer. For the task of surrogate modelling, we regress these
extracted features to the next state xt+1, one time step later.
As the tuning parameter for the feature extractor, we can se-
lect the pseudo-time step and concatenate features at multiple
pseudo-time steps.

Figure 3. Schema for fine-tuning a denoising diffusion model for
surrogate modelling. In the denoising network, the last layer is re-
moved, and the remaining network is used as a feature extractor,
extracting features at different pseudo-time steps. These features
φ(xt ) are then used as input for a linear regression or a small NN to
predict the next state xt+1 based on the current state. The biggest
part of the NN is frozen and remains untouched during this transfer
learning procedure.

The increasing noise magnitude with pseudo-time forces
the network to extract fine features for small pseudo-time
steps and coarse features for large pseudo-time steps. We
visualize this in Fig. 4a, where we project the activation
of an arbitrary neuron onto the x–z plane of the Lorenz
1963 model. The model extracts different features at differ-
ent pseudo-time steps, even for smaller pseudo-time steps
like τ = 0 and τ = 200. Nevertheless, the NN extracts more
complex feature for such smaller pseudo-time steps, whereas
the extracted features are more linearly separated for larger
pseudo-time steps.

To test the linearity of the extracted features, we fit a lin-
ear regression from state space xt to extracted feature space
φ(xt ,τ ), such that the following relation should approxima-
tively hold:

φ(xt ,τ )≈W>xt +β. (17)

The larger the pseudo-time step, the smaller the error of the
linear regression (Fig. 4b), and the better the features can be
linearly predicted from the state space. The network extracts
the most non-linear features for an intermediate pseudo-time
step around τ = 200. These results confirm the visual results
in Fig. 4a.

The ordinary differential equations of the Lorenz 1963
system include second-order polynomial terms, and, inte-
grated in time, the influence of the non-linearities in the sys-
tem increases with lead time. To learn a surrogate model for
multiple integration time steps, we need to extract non-linear
features. Consequently, we can expect that if the features are
more non-linear, they can be better used for surrogate mod-
elling.

To test this hypothesizes, we fit a linear regression from
feature space to the dynamics of the model after 10 integra-
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Figure 4. The learned representation of a pre-trained diffusion
model with a v parameterization and cosine noise scheduling, de-
pending on the pseudo-time step. (a) Extracted features projected
onto the x–z plane for an arbitrary neuron and five different pseudo-
time steps. The colour map is proportional to the anomaly of the
neuron’s excitation. The anomaly is positive for regions in red and
negative for regions in blue. (b) The RMSE of a linear regres-
sion from the three-dimensional state space to the extracted 256-
dimensional feature space; see also Eq. (17). (c) The normalized
RMSE (nRMSE) of a linear regression from the extracted features
to the state dynamics after 10 integration steps (0.1 MTU); see also
Eq. (18).

tion time steps, 1t = 0.1MTU (model time units), such that
the following relation should approximatively hold:

xt+1t − xt ≈W>φ(xt ,τ )+β. (18)

The smaller its error, the more useful the features for surro-
gate modelling are.

As the dynamics are non-linear, we also need non-linear
features for surrogate modelling. Consequently, the larger
the pseudo-time step, the less the predictions can explain the
dynamics of the system and the larger the regression error,
as can be seen in Fig. 4c. The features most linearly linked
to the dynamics are around an intermediate pseudo-time
step τ = 400. As different features at different pseudo-time
steps are extracted, we propose to extract features at multiple
pseudo-time steps between τ = 0 and τ = 600. These fea-
tures are concatenated as predictors in a linear regression or
small NN for surrogate modelling.

3.2 Ensemble generation by diffusing and denoising a
deterministic forecast run

Beside the feature space of the denoising NN, the latent space
also encodes useful information for other tasks than the net-
work was trained on (e.g. J. Song et al., 2021). In a second

approach, we use the latent space to generate a state ensem-
ble from a deterministic forecast run. This approach resem-
bles the approach of SDEdit (Meng et al., 2022) to guide the
editing of images with DDMs.

Our idea is to partially diffuse a deterministic forecast until
a given signal magnitude ατ is reached and to reconstruct
an ensemble out of the latent space. The diffusion process
from state to latent state is intrinsically stochastic and, thus,
a case of one-to-many mapping. Taking samples in the latent
space, we reconstruct an ensemble by iteratively applying the
denoising network for the same number of pseudo-time steps
as used to diffuse the deterministic forecast, as schematically
shown in Fig. 5a.

The denoising network is state-dependent, which also
makes the DDM for ensemble generation state-dependent,
as shown in Fig. 5b. Trained for state generation only, the
DDM has never seen any time-dependent relationships be-
tween samples. Consequently, the relationship between sam-
ples is purely induced by the climatology, and the state de-
pendency hardly translates into a flow dependency.

The denoising process is trained to generate states on the
attractor of the dynamical system. The chosen pseudo-time
step consequently controls the sampled portion of the attrac-
tor. Because of the state dependency, the resulting distribu-
tion is implicitly represented by the ensemble and could ex-
tend beyond a Gaussian assumption. We formalize the en-
semble generation and the implicit distribution representa-
tion in Appendix B, showing its connection to a Bayesian
framework.

The bigger the pseudo-time step, the smaller the signal
magnitude, and the more diffused the deterministic run is,
which controls the degree of uncertainty in the ensemble.
For a very small pseudo-time step with a signal magnitude
near 1, ατ ≈ 1, almost no noise would be added, and we
would end up with a very small ensemble spread. For a large
pseudo-time step with a signal magnitude near zero, ατ ≈ 0,
almost all data would be replaced by noise in the latent state;
the generated ensemble would correspond to a climatologi-
cal ensemble. In general, the choice of the pseudo-time step
is similar to the covariance inflation factor in an ensemble
data assimilation system.

We test this ensemble generation approach in data assim-
ilation with an ensemble Kalman filter. In fact, this method-
ology is an ensemble optimal interpolation approach (EnOI;
Evensen, 2003; Oke et al., 2002). Instead of specifying an
explicit covariance or providing states drawn from a clima-
tology, the samples generated with the DDM implicitly rep-
resent the prior distribution for the data assimilation.

4 Experiments

We showcase the potential of DDMs for representation learn-
ing in geoscientific systems with three different type of ex-
periments. In the state generation experiments (Sect. 4.1), we
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Figure 5. Schematic visualization of the ensemble generation with
denoising diffusion models for data assimilation. (a) The determin-
istic run is diffused for a given number of pseudo-time steps to-
wards the prior distribution N (0,I) and then reconstructed with the
pre-trained NN. As the diffusion process is stochastic, we can gen-
erate several latent states from which we can reconstruct an ensem-
ble. This ensemble is used in an ensemble optimal interpolation to
correct the deterministic run towards given observations. The black
dots in the beginning and at the end correspond to the forecasted
and corrected deterministic run. The blue lines depict four single
ensemble members, the white lines correspond to the 5th and 95th
percentiles, and the red background shows the density. For graphical
purposes, the assimilation step has a decreasing observation error to
its final value to depict a flow from prior to posterior distribution.
(b) Three examples of generated ensembles on the attractor of the
Lorenz 1963 system, projected onto the x–z plane. The generated
densities are estimated based on ensembles generated with a de-
noising diffusion model. The red crosses correspond to ensemble
members from a tuned ensemble Kalman filter system for the same
time as the generated densities. The shading in the background is
the density function of the full Lorenz 1963 system.

establish the methodology of DDMs. We test different set-
tings for the denoising network and compare these results to
the best practices in computer vision for image generation.
Afterwards, two downstream applications are built around
the best-performing denoising network. In the transfer learn-
ing experiments (Sect. 4.2), we use the pre-trained denoising
network as a feature extractor for surrogate modelling of the
Lorenz 1963 system; see also Sect. 3.1. In the ensemble gen-
eration experiment (Sect. 4.3), the DDM is combined with
an ensemble optimal interpolation to assimilate observations

into a deterministic forecast. Using these data assimilation
experiments, we can assess how well the DDM can generate
an ensemble out of deterministic forecasts; see also Sect. 3.2.

We perform all experiments with the Lorenz 1963 model
(Lorenz, 1963). Its dynamical system has three variables, x,
y, and z, and is defined by the following set of ordinary dif-
ferential equations, where we use the standard parameters,

dx
dt
= σ (y− x), σ = 10 (19a)

dy
dt
= x(ρ− z)− y, ρ = 28 (19b)

dz
dt
= xy−βz, β =

8
3
. (19c)

The chosen parameters induce a chaotic behaviour with an
error doubling time of 0.78MTU (model time units). We
integrate the dynamical system with a fourth-order Runge–
Kutta integrator and an integration time step of 0.01MTU.

We base our experiments on an ensemble of 33 trajectories
(16 for training, 1 for validation, and 16 for testing), initial-
ized with random states, sampled from N (0, (0.001)2I). The
first 1× 105 integration steps are omitted as spin-up time.
We integrate the system with an additional 1× 106 steps to
generate the states needed for training, validation, and test-
ing. This way we generate 1.6× 107 samples for training,
1× 106 for validation, and 1.6× 107 for testing. This large
number of samples allows us to test settings without being
constrained by data. Before training, the data are normal-
ized by the mean and standard deviation estimated based
on the training dataset. The code is developed in Python
(Van Rossum, 1995), using PyTorch (Paszke et al., 2019) and
PyTorch lightning (Falcon et al., 2020), and is publicly avail-
able at https://github.com/cerea-daml/ddm-attractor (last ac-
cess: 17 September 2024, Finn, 2023).

4.1 State generation

As the denoising network, we use a ResNet-like architec-
ture (He et al., 2015) with fully connected layers; for more
information, see Appendix D1. To condition the network
on the pseudo-time step, we encode the discrete pseudo-
time (τ ∈ [0,1000]) by a sinusoidal encoding (Vaswani et al.,
2017). The encoded pseudo-time modulates via a linear func-
tion to the scale and shifting parameters of the layer normal-
izations in the residual layers. In total, the denoising network
has 1.2× 106 parameters, a very large number of parameters
for the Lorenz 1963 system. However, we are in a training
data regime with a very large number of samples, rolling out
the state generation experiments without worrying about un-
derfitting of the network.

The networks are trained with the Adam (Kingma and Ba,
2017, γ = 3× 10−4) optimizer for 100 epochs with a batch
size of 16384. To reduce the amount of randomness in the
results, each experiment is performed 10 times with differ-
ent seeds, which randomize the initial weights for the neural
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network, the order of the samples within one epoch, and the
noise added to the samples during training.

If not differently specified, we sample 1× 106 states
with the DDPM scheme, defined in Eq. (14), for T = 1000
pseudo-time steps, which the networks are trained for. These
generated states are compared to the testing samples us-
ing five different metrics; for exact definitions, see also Ap-
pendix E.

We compare how near the generated states are to the at-
tractor using the Hellinger distanceH between the generated
state distribution and the testing state distribution (Arnold
et al., 2013; Gagne II et al., 2020); to estimate the distance,
we discretize the state into cubes (Scher and Messori, 2019).
The Hellinger distance is bounded 0≤H ≤ 1 with H = 0
if the distributions perfectly correspond to each other and
H = 1 if there is no overlap.

To measure the perceptual quality of the generated states,
we adapt the Fréchet inception distance to our Lorenz 1963
settings, in the following called Fréchet surrogate distance
(FSD). Replacing the inception network, we estimate the
Fréchet distance in feature space spanned by a dense neural
network with two hidden layers, trained for surrogate mod-
elling. The smaller the distance, the better match the statis-
tics of the generated state distribution to the testing state dis-
tribution in feature space. Heusel et al. (2017) have shown
that the Fréchet inception distance is consistent with human
judgement on disturbed image data.

We additionally compute the squared distance of the near-
est neighbour between generated states and the testing sam-
ples, either as the expectation over the generated states dgen
or as the expectation over the testing states d test. To evalu-
ate rare events, we use a peak-over-threshold metric (POT).
We use the 1st and 99th percentile from the testing dataset
such that 2% of the generated samples should lie on average
below and above the lower and upper threshold, respectively.

4.1.1 Results

In our simplified formulation, changing the parameteriza-
tion of the neural network output changes the loss function
and the weighting of the Kullback–Leibler divergence, as ex-
plained in Sect. 2.4. The weighting is additionally influenced
by the chosen noise scheduling, here either a linear sched-
uler or a cosine scheduler (Nichol and Dhariwal, 2021), both
defined in Appendix C. In Table 1, we compare the output
parameterizations and noise scheduler in terms of the result-
ing generative quality.

The noise ε and velocity v parameterizations result in the
best scores. Additionally, a cosine noise scheduler improves
almost all scores compared to a linear scheduler. During
training (not shown), we have experienced that the velocity
v parameterization is more stable and converges faster than
the noise ε parameterization. These results confirm results
from image generation, where a velocity v parameterization
has been introduced to stabilize the training of the neural net-

Figure 6. (a–c) True samples from the testing dataset, projected
into the depicted two dimensions. (d–f) Generated samples for a de-
noising diffusion model with a v parameterization, a cosine sched-
uler, and 1000 pseudo-time steps with a DDPM scheme, projected
into the depicted two dimensions. (g–i) Marginal one-dimensional
empirical probability density functions (PDFs) for the samples from
the testing dataset (blue) and the generated samples (red). The over-
lap in the marginal distributions results in the magenta-like colour.

work (Salimans and Ho, 2022). Hence, we recommend a ve-
locity v parameterization and a cosine noise scheduler as de-
fault combination for training DDMs. All following results
are consequently derived based on this configuration (also
marked as bold in Table 1).

Analysing the scores for the peak-over-threshold metric
(POT), the DDMs are slightly underdispersive. However,
the better the model, the better the coverage. Furthermore,
the generated states visually cover the testing samples, in
terms of two-dimensional projections, as shown in Fig. 6a–f.
Comparing the one-dimensional marginal empirical proba-
bility density functions in Fig. 6g–i, the generated samples
are almost indistinguishable from the true samples, even in
their extreme values. Taking Table 1 and Fig. 6 into account,
DDMs can generate state samples very similar to those drawn
from the attractor of the dynamical system.

Since the denoising neural network must be iteratively ap-
plied, generating samples with DDMs can be slow, especially
for high-dimensional states. Trained with 1000 pseudo-time
steps, DDMs can generate samples by skipping steps to speed
up the generation process. We evaluate the effect of fewer
generation steps in Table 2, where the generation quality is
measured in terms of Hellinger distance. As the DDIM sam-
pling scheme has been introduced for data generation with
fewer steps (J. Song et al., 2021), we additionally evaluate
the impact of the additional noise during sampling.

For all sampling schemes, the quality of the generated
samples improves with the number of pseudo-time steps.
However, the improvements between 100 pseudo-time steps
and 1000 pseudo-time steps are small compared to differ-
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Table 1. Performance of samples generated with different output parameterizations and noise schedulers compared to the test dataset. All
samples are generated for 1000 pseudo-time steps and a DDPM scheme. The first two entries are values for the training and validation data.
The scores are averaged across 10 neural networks trained with different random seeds and multiplied by the number in brackets. Downward
arrows show that the lower the score, the better. Bold values indicate the best-performing method for a given column, and the velocity
parameterization with a cosine noise scheduler is used in subsequent experiments.

Parameterization Scheduler H (×102) ↓ FSD(×103) ↓ dgen(×106) ↓ d test(×105) ↓ POT

Training – 1.28 0.23 0.87 0.09 2.00
Validation – 3.11 0.26 0.79 1.40 2.01

State x Linear 17.77 159.08 125.62 13.29 1.73
State x Cosine 14.76 170.56 66.94 8.88 1.90
Noise ε Linear 4.64 7.27 8.27 1.69 1.92
Noise ε Cosine 4.03 5.75 4.58 1.53 1.89
Velocity v Linear 4.54 7.66 8.09 1.69 1.88
Velocity v Cosine 4.00 5.17 4.50 1.52 1.91

Table 2. Hellinger distance between the generated state distribu-
tion and the test state distribution for different sampling schemes
and generation steps; the lower the distance, the better. For visual
convenience, the Hellinger distances are multiplied by 1× 102. η
corresponds to the noise magnitude in the sampling scheme, as de-
fined in Eq. (15b). The distances are averaged across 10 different
random seeds. Bold numbers indicate the best distance for a given
number of time steps, and the DDPM sampling is used in all other
experiments.

Scheme 10 20 50 100 1000

DDIM (η = 0.0) 24.09 14.41 7.18 5.01 3.94
DDIM (η = 0.2) 24.16 14.45 7.18 5.00 3.90
DDIM (η = 0.5) 24.54 14.75 7.28 5.01 3.86
DDIM (η = 1.0) 27.55 16.68 8.19 5.43 3.90
DDPM 27.50 16.60 8.15 5.40 3.97

ences from different output parameterizations and the noise
schedulers. With a smaller computational budget to generate
data, a DDM can generate data still with an acceptable qual-
ity but in fewer pseudo-time steps.

Similar to the results found for image generation (J. Song
et al., 2021), reducing the added noise during generation
of the state samples can improve the quality of the gener-
ated samples for a smaller number of time steps than they
are trained for. The deterministic DDIM with η = 0.0 is the
best-performing sampling scheme for a smaller number of
pseudo-time steps than 50. However, when the full 1000
pseudo-time steps are used for data generation, almost no
differences are left between the different sampling schemes.

4.2 Surrogate modelling

In this next step, we fine-tune a DDM as a feature extrac-
tor for surrogate modelling. As a reminder, the model is pre-
trained with the velocity v parameterization and cosine noise
scheduling. Based on the initial state xt at time t , we want

to predict the state xt+1t for a lead time 1t = 0.1MTU,
a mildly non-linear setting (Bocquet, 2011). We parameter-
ize the surrogate modelling function M̃(xt ) as an additive
model, where the statistical model gθ (xt ) with its parameters
θ represents the residual,

xt+1t ≈ M̃(xt )= xt + gθ (xt ). (20)

In our transfer learning experiments, the statistical model
works on top of features extracted by the pre-trained network
φ(zτ ,τ ), as explained in Sect. 3.1. We fix the pseudo-time in
the feature extractor and concatenate features from different
pseudo-time steps. We have three different pseudo-time step
settings, either a single step τ = [400], two pseudo-time steps
τ = [50,400], or six steps τ = [0,50,100,200,400,600].
On top of the feature extractor, we train either a linear re-
gression or a shallow neural network,

gθ (xt )={
W>φ(xt ,τ )+β linear regression
W>1 max

(
0,W>φ(xt ,τ )+β

)
+β1 shallow neural network,

(21)

with its transposed weights W> and W>1 and biases β and
β1. The shallow neural network always has 256 hidden fea-
tures.

We compare the transfer-learned surrogate models to ran-
dom Fourier features (RFFs; Rahimi and Recht, 2007) and
neural networks trained from scratch. In the case of RFFs,
we replace the pre-trained feature extractor by either 256 or
1536 random Fourier features that approximate a Gaussian
kernel as specified in Eq. (1) of Sutherland and Schneider
(2015). These features can be seen as non-recurrent instanti-
ation of a random feature extractor, often used for machine
learning in dynamical systems (e.g. Vlachas et al., 2020; Ar-
comano et al., 2020). For the neural network, we use two
different architectures, a simple architecture where we stack
m ∈ [1,2,3] fully connected layers with 256 neurons and
rectified linear unit (relu) activation functions in between or
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a ResNet-like architecture with three residual blocks, as sim-
ilarly specified in Appendix D1.

For all experiments, we optimize the statistical model for
the mean-squared error (MSE) between the true increment
1xt+1t = xt+1t − xt and the output of the neural network.
The linear regression models are analytically estimated as an
L2-regularized least-squares solution, also called ridge re-
gression. The L2 regularization parameter is held constant
(λ= 1× 10−4) to simplify the training and the comparison
between experiments. All neural network models are trained
with the Adam optimizer (γ = 5×10−5) for 100 epochs with
a batch size of 16384. We refrain from learning rate schedul-
ing or early stopping for the ease of comparison.

To evaluate the surrogate models and their stability for
longer lead times than1t = 0.1MTU, we use the forecast as
initial conditions for the next iteration, iterating for k times
to cover a lead time of k ·1t . These trajectories are com-
pared to the trajectories in the testing dataset in terms of
root-mean-squared error, normalized by the state climatology
in the training dataset. Additionally, to estimate the quality
of the resulting climatology, we compare the Hellinger dis-
tance of the predictions between 5 and 10MTU to the testing
dataset. We estimate the Hellinger distance as in Sect. 4.1.

4.2.1 Results

In Table 3, we evaluate the transfer-learned surrogate models
for a lead time of 1t = 0.1MTU and 1t = 1MTU, which
corresponds to 1 iterations or 10 iterations, respectively, and
the Hellinger distance H . Additionally, we compare this
model to other surrogate models, learned from scratch.

All transfer-learned models have a predictive power that
reaches beyond one model time unit. The performance of the
pre-trained models is unreachable for untrained feature ex-
tractors, showing the added value of pre-training as DDMs.
Furthermore, the transfer-learned models can outperform
random Fourier feature (RFF) networks and perform simi-
larly to NNs trained from scratch.

Extracting features at multiple pseudo-time steps can
strengthen transfer learning, and such models can improve
on transfer-learned models with only τ = 400 as the pseudo-
time step for the feature extraction. The advantage of using
multiple time steps is especially evident for models with a
linear regression, while only small differences exist for a
shallow NN with 256 hidden neurons after the feature ex-
traction. On the one hand, the shallow NN can non-linearly
combine the extracted features, which seem to help in the
case with a single time step. On the other hand, an increasing
number of extracted features results in an increased collinear-
ity between features and a more unstable training, as shown
by the increased standard deviation in the case of the Transfer
(6× τ , NN) experiment. The L2 regularization of the linear
regression reduces the feature collinearity, such that Transfer
(6× τ , linear) performs better than the Transfer (τ = 400,
linear) model. Consequently, features from multiple time

Figure 7. The normalized root-mean-squared error (nRMSE) as
a function of integration time steps for random Fourier features
(RFFs) with 1536 features and a linear regression, a dense neural
network with two layers trained from scratch, and transfer-learned
models (Transfer) with features from six pseudo-time steps with a
linear regression and from two pseudo-time steps with a neural net-
work. Shown is the median across 10 different random seeds. Ad-
ditionally, for the RFF (1536, linear) and the Transfer (2× τ , NN)
experiments, the 5th and 95th percentiles are depicted as shading.

steps increase the performance for the linear regression case,
whereas fine-tuning with a neural network can lead to better
results, if the collinearity has been taken care of, for example,
by restricting the number of pseudo-time steps.

Feature extraction with random Fourier features (RFFs)
needs a high number of features to perform well, even for the
three-dimensional Lorenz 1963 system. Hence, the transfer-
learned models with features from a single pseudo-time steps
outperform RFFs for the same number of features, here
256. While a higher number of RFFs can initially outper-
form transfer-learned models, their performance and stability
for longer lead times heavily depend on the drawn random
weights. Contrastingly, the transfer-learned model is stable
for all tested integration time steps, as also shown in Fig. 7.
The transfer-learned models converge towards a climatolog-
ical forecast, as can also be seen in the performance of the
Transfer (untrained, 6×τ , linear) model, whereas RFF-based
models diverge. Additionally, as the needed number of RFFs
scales with the data dimensionality, transfer learning can be
preferable for higher-dimensional problems than the Lorenz
1963 system. Transfer learning can outperform RFFs, espe-
cially with regard to the long-term stability of the model.

The best transfer-learned model (2× τ , NN) performs on
par with the best NN trained from scratch (ResNet), while
the transfer-learned models with a shallow NN can outper-
form other NNs learned from scratch for shorter lead times.
Note that the NNs are trained with a fixed learning rate, and
the results for the neural networks trained from scratch may
indicate convergence issues. Since the models are trained for
lead times of 0.1MTU without autoregressive steps, their
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Table 3. Performance of the surrogate models as shown by the average and standard deviation across 10 random seeds. Shown is the
normalized root-mean-squared error (nRMSE) for 1t = 0.1MTU, as trained for, and after 1t = 1.0MTU, and the Hellinger distance (H )
of the prediction to the testing dataset. For visual purposes, the scores are multiplied by the number in the brackets. Params is the number of
trainable parameters for the specified experiment. Downward arrows show that the lower the score, the better. Bold values indicate the lowest
scores for a given column.

1t = 0.1 1t = 1.0
Model Params nRMSE (×105) ↓ nRMSE (×102) ↓ H (×102) ↓

RFF (256, linear) 7.7× 102 1603.9 ± 508.5 519.3 ± 83.6 92.1 ± 5.5
RFF (1536, linear) 4.6× 103 17.4 ± 9.1 8.2 ± 50.5 6.7 ± 13.1
RFF (256, NN) 6.6× 104 26.3 ± 2.7 71.4 ± 18.4 47.6 ± 13.3
RFF (1536, NN) 3.9× 105 11.5 ± 1.6 29.1 ± 6.0 18.8 ± 5.2

Dense (×1) 1.8× 103 17.2 ± 0.8 11.1 ± 0.7 3.1 ± 0.3
Dense (×2) 6.8× 104 8.9 ± 1.4 8.5 ± 2.9 1.8 ± 0.1
Dense (×3) 1.3× 105 10.2 ± 1.5 9.9 ± 3.5 1.7 ± 0.2
ResNet 4.0× 105 7.5 ± 2.3 8.4 ± 4.8 1.7 ± 0.2

Transfer (untrained, 6× τ , linear) 4.6× 103 5710.6 ± 0.0 100.1 ± 0.0 100.0 ± 0.0
Transfer (untrained, 6× τ , NN) 3.9× 105 21.7 ± 7.6 15.3 ± 3.8 3.2 ± 1.7
Transfer (τ = 400, linear) 7.7× 102 115.7 ± 4.7 35.1 ± 1.5 18.6 ± 1.7
Transfer (6× τ , linear) 4.6× 103 23.1 ± 1.2 15.9 ± 1.8 6.7 ± 6.2
Transfer (τ = 400, NN) 6.6× 104 9.1 ± 1.2 8.4 ± 2.1 2.0 ± 0.2
Transfer (2× τ , NN) 1.3× 105 7.5 ± 2.0 6.8 ± 1.0 1.7 ± 0.2
Transfer (6× τ , NN) 3.9× 105 12.4 ± 2.8 13.9 ± 7.9 14.1 ± 8.3

performance for longer lead times is impacted by random-
ness as shown by the spread between difference seeds in
Fig. 7. Compared to this spread, the transfer-learned models
with a shallow NN and the NNs trained from scratch perform
similarly.

To see if a better generative score translates into better
surrogate models, we compare the generative Hellinger dis-
tance to the RMSE of the surrogate model, transfer-learned
with a linear regression for different output parameterizations
in Table 4. In general, the ordering between the output pa-
rameterizations remains more or less the same for surrogate
modelling as for data generation; the state parameterization
has the worst performance, whereas the noise and velocity
parameterization have a performance similar to each other.
For the noise and velocity parameterization, pre-training with
cosine noise scheduling performs better than with a linear
scheduling.

The differences caused by different random seeds are
smaller than the differences between different parameteri-
zations and the noise scheduler; experiments with a cosine
noise scheduler generally result in lower standard deviations
between seeds. Therefore, the better the generative model,
the better the NN can be fine-tuned towards surrogate mod-
elling. Pre-training with a velocity parameterization hereby
results in the best surrogate modelling performance.

Table 4. Comparison between the pre-trained denoising diffusion
models in terms of generative Hellinger distance H and root-mean-
squared error (nRMSE) after one iteration with the transfer-learned
surrogate model (1t = 0.1MTU). The brackets in the experiment
name indicate the noise scheduling with which the denoising dif-
fusion model was trained. Shown is the averaged performance and
standard deviation across 10 different seeds. For visual purposes,
the scores are multiplied by the number in the brackets. Downward
arrows show that the lower the score, the better. The experiment in
bold is the experiment used in Table 3, and bold numbers indicate
the best performance in a given column.

Generative Surrogate (1t = 0.1)
Experiment H (×102) ↓ nRMSE (×103) ↓

State x (linear) 17.61 ± 2.24 4.13 ± 0.31
State x (cosine) 14.38 ± 1.69 4.31 ± 0.22
Noise ε (linear) 4.56 ± 0.30 3.83 ± 0.26
Noise ε (cosine) 4.02 ± 0.19 2.74 ± 0.13
Velocity v (linear) 4.56 ± 0.32 3.08 ± 0.88
Velocityv (cosine) 3.96 ± 0.16 2.34 ± 0.12

4.3 Data assimilation with a generated ensemble

We test how the latent states in the DDM can be used for en-
semble generation in a data assimilation setup. We define the
long trajectories from the testing dataset as our truth xt

1:tend
,

going from time t = 1 to time t = tend. In our experiments,
the observation operator is given as the identity matrix H= I;
all three states are observed. The observations yo

t at time t are
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perturbed with white noise drawn from a Gaussian distribu-
tion, with a pre-specified observation standard deviation σ o,

yo
t =Hxt

t + ε
o
t ,ε

o
t ∼N (0, (σ o)2I). (22)

If not differently specified, we set the observation standard
deviation to σ o

= 2 and the time interval between observa-
tions to 1t = 0.1MTU.

As data assimilation algorithm, we use an ensemble trans-
form Kalman filter (ETKF; Bishop et al., 2001; Hunt et al.,
2007). In cases where the ensemble is externally generated,
we modify the ETKF as proposed by Schraff et al. (2016) to
update the deterministic background forecast.

In the DDM experiment, based on a deterministic run, we
draw 50 ensemble members with the DDM as proposed in
Sect. 3.2. We use the pre-trained neural network with a ve-
locity output parameterization, a cosine noise schedule, and a
single random seed (seed= 0) to generate the ensemble. The
denoising diffusion model is additionally defined by its sam-
pling scheme, the number of maximum pseudo-time steps T
until the prior distribution is reached, and the signal magni-
tude ατ of the partial diffusion. We sample in the denoising
process with a DDPM scheme and set the number of maxi-
mum pseudo-time steps to T = 100, reducing the computa-
tional needs. The only parameter in the ensemble generation
is consequently the signal magnitude ατ , which we tune for
each experiment independently.

We compare the proposed ensemble generation methodol-
ogy to a full ETKF, ensemble optimal interpolation (EnOI),
and 3D-Var. The full ETKF is the reference and includes
flow-dependent covariances, a feature missing in the pro-
posed ensemble generation method. The EnOI experiments
define a baseline with static covariance matrices. As we have
to generate an external ensemble in the EnOI experiments,
we induce sampling errors in the data assimilation. The 3D-
Var experiments use the same covariances as the EnOI but
analytically solve the Kalman filter equation without sam-
pling.

We run the full ETKF with 3 or 12 ensemble members and
an optimally tuned multiplicative prior covariance inflation.
Here, the ensemble mean specifies the deterministic forecast.
The ETKF estimates one first-guess covariance matrix Pb

t per
forecast. To define the background covariances in our EnOI
experiments, we use the first-guess covariance matrices from
the 12-member ETKF run with an update time delta of 1t =
0.1MTU, averaged over the full trajectory with S steps and
inflated by a tuning factor α,

B=

{
αS−1∑S

t=1Pb
t full covariance

αS−1∑S
t=1(σ b

t )2I diagonal covariance.
(23)

The full covariance matrix is specified in Appendix D2. Be-
sides a full covariance, we also specify a diagonal covariance,
an often used approximation in EnOI. With the background
covariances defined this way, per update step we draw 50 en-

Table 5. Comparison of the normalized root-mean-squared error
(nRMSE) in the analysis and background forecasts for different data
assimilation methods. Shown are the nRMSE average and standard
deviation across 16 experiments with different seeds. The number
in the brackets is the number of ensemble members, Diag the use of
a diagonal covariance matrix, and Full the use of a full covariance
matrix.

Experiment Analysis Background

EnOI Diag (×50) 0.158±±0.001 0.209± 0.003
EnOI Full (×50) 0.138 ± 0.001 0.189 ± 0.001
3D-Var 0.136 ± 0.001 0.189 ± 0.002
ETKF (×3) 0.089 ± 0.003 0.130 ± 0.003
ETKF (×12) 0.077 ± 0.003 0.114 ± 0.004
DDM (×50) 0.135 ± 0.001 0.188 ± 0.002

semble members (for a fair comparison to the DDM exper-
iments), which are centred around the deterministic run and
then used to update the deterministic run.

We initialize all experiments with states randomly drawn
from the climatology of the testing dataset. Each experiment
has 55000 update cycles, where we omit the first 5000 up-
dates as the burn-in phase. We repeat each experiment 16
times with different random seeds. This way, each batch of
experiments has 8× 105 analyses. The parameters for each
batch of experiments, the signal amplitude ατ for the partial
diffusion in the DDPM scheme, the prior covariance inflation
ρ for the ETKF, and the covariance inflation α for the EnOI,
are tuned to give the lowest time-averaged analysis RMSE,
averaged over the 16 repetitions.

We compare the analyses to the true trajectories in terms of
RMSE at analysis time, normalized with respect to the clima-
tology. Additionally, we run forecasts based on the analyses
and compare them to the true trajectories to see the impact
on longer lead times.

4.3.1 Results

We compare the analysis and background normalized RMSE
to a tuned ensemble Kalman filter (ETKF), ensemble opti-
mal interpolation (EnOI), and 3D-Var in Table 5. The time
between updates is 1t = 0.1MTU, a mildly non-linear case
(Bocquet, 2011).

The ensemble members generated by a DDM can be used
to assimilate observations into a deterministic forecast with a
EnOI-like scheme. Data assimilation with DDM results in a
slight improvement compared to EnOI with full covariances
and matches 3D-Var; it hereby surpasses the performance
of EnOI with a diagonal covariance, as often employed in
EnOI. As the DDM has just one tuning parameter, the signal
magnitude ατ , this type of ensemble generation can provide
a simplified way for ensemble data assimilation algorithms,
needing less tuning than EnOI.
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Figure 8. Normalized root-mean-squared error (red solid line) of
the deterministic background forecast and generated ensemble stan-
dard deviation (orange dashed line). The 50 ensemble members of
the EnOI experiments are generated with the diffusion sampler with
different signal magnitudes. The dotted black line corresponds to
the signal magnitude used for the DDM experiments in Table 5.
The results are averaged across 16 experiments.

The DDM is state-dependent, which can explain the small
advantage compared to EnOI with the same number of en-
semble members. However, as an ensemble Kalman filter
provides additionally a flow dependency, it performs much
better than EnOI, 3D-Var, and the DDM. Consequently, to
match the performance of the ensemble Kalman filter with
the DDM, we need to incorporate flow information into the
DDM. Nevertheless, pre-trained for state generation, DDMs
can be a cheap alternative to generating an ensemble for data
assimilation purposes.

In Fig. 8, we show the influence of the signal magnitude
on the background RMSE and the spread of the generated
ensemble.

The bigger the pseudo-time step, the smaller the signal
magnitude, and the more diffused is the deterministic run
during the partial diffusion, which controls the degree of
uncertainty in the ensemble. For a very small pseudo-time
step with a signal magnitude near 1, ατ ≈ 1, almost no noise
would be added, and we would end up with a (too) small
ensemble spread. For a large pseudo-time step with a signal
magnitude near zero, ατ ≈ 0, almost all data would be re-
placed by noise in the latent state; the generated ensemble
would correspond to a climatological ensemble with a (too)
large ensemble spread. Similar to an ensemble data assimila-
tion system, the lowest RMSE is reached when the ensemble
spread roughly matches the RMSE. Consequently, the choice
of the pseudo-time step is similar to the covariance inflation
factor in an ensemble data assimilation system.

Until now, we have shown results for a single time delta
between two update times with 1t = 0.1MTU. In Fig. 9, we
show results for varying this time delta for the ETKF, the
EnOI with static covariances, and EnOI with the DDM sam-

Figure 9. Scaling of the analysis nRMSE with increasing time delta
between updates for the ETKF, EnOI with drawn ensemble mem-
bers from a climatological covariance, EnOI with an exact climato-
logical covariance, and EnOI with ensemble members generated by
a denoising diffusion model. The parameters of the different data
assimilation methods are tuned to reduce the nRMSE.

pler; all experiments are tuned for each time delta indepen-
dently.

Increasing the time between data assimilation updates in-
creases the non-linearity of the system. For all tested time
deltas, EnOI with a DDM performs in the analysis RMSE
slightly better than EnOI with static covariances. Although
the performance of the ETKF is unreachable for any update
time, the gain of DDMs compared to static covariances in-
creases with increasing non-linearity of the system.

This gain is a result of the non-Gaussian distribution
of the generated ensemble members for heavily non-linear
state propagation, as can be seen in Fig. 10. The latent
state obtained after the diffusion process is purely Gaussian-
distributed by definition; see also Eq. (4). However, the itera-
tive denoising process is state-dependent, which can result in
non-Gaussian ensemble distributions. The larger the pseudo-
time step for the ensemble generation, the larger the sampled
portion of the attractor and the more non-Gaussian the distri-
bution in the denoising process can get. Therefore, tuning the
pseudo-time step of the DDM allows us to tune not only its
ensemble spread but also the sampled portion of the attractor.

5 Summary and discussion

In this study, we investigate unconditional denoising diffu-
sion models (DDMs) for representation learning in dynami-
cal systems. We train such models on the task of state genera-
tion in the Lorenz 1963 model. Using a large dataset of state
and deep residual neural networks (NNs), we test settings
that are almost unconstrained from the dataset size or the
NN capacity. In these settings, the DDM can generate states
that are almost indistinguishable from states drawn from the
model’s attractor.
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Figure 10. Comparison of two ensembles with 16384 members,
generated by a denoising diffusion model with a DDPM sampler for
τ = 7 (blue) and τ = 31 (red) pseudo-time steps based on an arbi-
trary deterministic state. These number of pseudo-time steps is used
in Fig. 9 for 1t = 0.05 and 1t = 0.25, respectively. The diagonal
panels show the empirical probability density function of the gen-
erated ensemble members in a (a) x direction, (e) y direction, and
(i) z direction. The inter-variable relationships as two-dimensional
projection are shown in the off-diagonal panels, with the upper tri-
angular panels (b, c, f) for τ = 7 and the lower triangular panels (d,
g, h) for τ = 31. The black lines and white stars are the determinis-
tic state.

Our results for state generation correspond to those found
for image generation. Predicting the noise performs better
than directly predicting the state, as similarly found by Ho
et al. (2020). Across all tested settings, cosine noise schedul-
ing is superior to linear noise scheduling (Nichol and Dhari-
wal, 2021). Furthermore, we obtain the most stable results
for predicting a velocity v, as discussed by Salimans and
Ho (2022). For a few generation steps, using deterministic
sampling with denoising diffusion implicit models (DDIM)
outperforms its stochastic counterparts (J. Song et al., 2021).
In general, results from image generation and improvements
therein seem transferable to state generation for dynamical
systems.

We can approximate the state distribution of the Lorenz
1963 system by state quantization and estimation of a three-
dimensional empirical probability density function (PDF).
We can consequently evaluate generative models by com-
paring the empirical PDF of states generated with the model
to states drawn from the attractor. However, the estimation
of a multivariate empirical PDF is unfeasible for higher-
dimensional systems.

To circumvent such problems, we adapt the Fréchet in-
ception distance (FID) to geoscientific settings. This dis-
tance compares the generated states to the real states with
the Fréchet distance in the feature space of a pre-trained NN.
We replace the commonly used inception network (Szegedy
et al., 2014) by a NN pre-trained for surrogate modelling in

the Lorenz 1963 system. The ordering of different genera-
tive parameterizations in this adapted metric is very similar
to the ordering found by estimating the Hellinger distance
between the empirical PDFs. An adapted FID can be a good
metric for evaluating generative models in high-dimensional
geoscientific settings. One of the remaining challenges with
this method is the choice of an appropriate pre-trained NN to
estimate the Fréchet distance.

At a first glance, unconditional DDMs, trained for state
generation, have a smaller application range compared to
their conditional counterpart. Here, we fine-tune the uncon-
ditional denoising NN for surrogate modelling and apply the
full unconditional DDM for ensemble generation.

By removing its last layer, we can use the denoising NN as
a feature extractor for surrogate modelling. Our results indi-
cate that the NN learns general features about the dynamical
system, when pre-trained for state generation. The extracted
features depend on the pseudo-time step, with more complex
features for smaller steps. Consequently, by combining fea-
tures from different pseudo-time steps, we use more infor-
mation from the feature extractor.

Although the DDM has previously never seen information
about the temporal dynamics of the dynamical system, we
can fine-tune the denoising NN for surrogate modelling. By
regressing features from a single pseudo-time step, the fine-
tuned network performs better than random Fourier features
with the same number of extracted features. This suggests
that for higher-dimensional problems, pre-trained denoising
NNs may perform much better than random Fourier features
as a feature extractor.

By learning a shallow NN on top of the extracted fea-
tures, the fine-tuned network achieves scores similar to deep
NNs. As Lorenz 1963 is a low-dimensional system, where
NNs can almost perfectly predict the temporal dynamics, a
NN trained from scratch can be difficult to beat. However,
for high-dimensional systems, where we might only have a
few training samples, training a deep NN from scratch might
be infeasible. To pre-train a DDM, we can use large, het-
erogeneous datasets and, then, fine-tune the NN on small
problem-specific datasets. Our encouraging results for low-
dimensional settings indicate this potential for transfer learn-
ing of DDMs and their use as pre-trained feature extractor.

Beside surrogate modelling, we apply the DDM for en-
semble generation in a data assimilation. By diffusing and
denoising, we generate an ensemble out of a deterministic
run. The ensemble can define the prior distribution for an
ensemble optimal interpolation (EnOI) scheme to assimilate
observations into a deterministic forecast. Such a data assim-
ilation with a DDM as the sampler performs at least as well
as EnOI with static but tuned covariances. The ensemble gen-
erated with the DDM inherits the state dependency of the de-
noising NN. As a result, the more non-linear the system, the
larger the gain of the DDM sampling can get compared to
static covariances in EnOI.
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Data assimilation with a propagated ensemble profits from
its state and flow dependency. Since the DDM is only trained
for state generation, its attractor is only defined in state
space. The time dimension and, hence, one of the require-
ments for flow dependency are missing. Consequently, the
performance of a tuned ensemble Kalman filter is unreach-
able for EnOI with a DDM sampler. To make the sampler
flow-dependent, we must incorporate the time dimension. In-
stead of generating states static in time, the DDM could learn
to generate small trajectories. By partially diffusing the fore-
cast trajectory, we can inform the sampler about the temporal
development and, thus, generate a flow-dependent ensemble.

The proposed ensemble sampling could additionally aug-
ment an ensemble by additional ensemble members. This
augmentation would be similar to the use of a climatological
augmented ensemble (Kretschmer et al., 2015). The clima-
tological ensemble members would be replaced by ensemble
members generated with the DDM. This can be additionally
seen like ensemble data assimilation with a hybrid covariance
matrix (Hamill and Snyder, 2000; Lorenc, 2003), where the
covariance is a weighted average between the original en-
semble covariance and the covariance of the generated mem-
bers. On the one hand, the original ensemble members would
bring the flow dependency into ensemble. On the other hand,
augmenting the ensemble by generated members could be a
way to reduce the need of inflation and localization in an en-
semble data assimilation system.

The application of pre-trained unconditional DDMs for
surrogate modelling and ensemble generation indicates their
potential for geoscientific problems. Trained to sample from
the attractor, the model learns an internal representation, then
applicable in downstream tasks. The combination of DDMs
with data assimilation could additionally be a way to learn
such deep generative models from combining observations
with a geophysical model. Using such a combination, DDMs
could possibly learn a representation of the true Earth sys-
tem’s attractor. This representation might be then helpful
for large-scale applications like model error corrections (e.g.
Bonavita and Laloyaux, 2020; Farchi et al., 2021; Chen et al.,
2022; Finn et al., 2023) or digital twins (e.g. Bauer et al.,
2021a, b; Latif, 2022; Li et al., 2023b).

In this study, we use the three-dimensional Lorenz 1963
system exclusively, and it remains unknown whether the pro-
posed methods are applicable to higher-dimensional systems.
However, DDMs have demonstrated scalability to global
scales, such as in weather prediction (Price et al., 2024)
and the generation of new ensemble members from exist-
ing ones (Li et al., 2023a). Furthermore, convolutional NNs
(e.g. Dhariwal and Nichol, 2021; Rombach et al., 2022) and
transformers (Peebles and Xie, 2023) are commonly applied
for image generation with DDMs. This suggests that the pro-
posed methods might also be effective in higher-dimensional
contexts and for other NN architectures. Therefore, based on
our results and the demonstrated scalability of DDMs, we

see potential for using representation learning with DDMs in
higher-dimensional geophysical systems.

6 Conclusions

In this paper, we investigate the capabilities of denoising dif-
fusion models for representation learning in dynamical sys-
tems. Based on our results with the Lorenz 1963 model, we
conclude the following:

– Denoising diffusion models can be trained to generate
states on the attractor of the dynamical system. Using
a large training dataset and a residual neural network,
the generated states are almost indistinguishable from
states drawn from the true attractor. To achieve a sta-
ble training for dynamical systems, we can recommend
denoising diffusion models with a velocity v output pa-
rameterization and a cosine noise scheduler. Similar to
results for image generation, the deterministic DDIM
sampling scheme works best for few pseudo-time steps.

– Denoising diffusion models can be fine-tuned for down-
stream tasks by applying the denoising neural network
as a feature extractor and retraining its last layer. The
features extracted by the denoising network depend on
the pseudo-time step used, with more complex fea-
tures for smaller steps. Combining features at differ-
ent pseudo-time steps, we can empower the feature ex-
tractor for downstream tasks. A better-performing gen-
erative model can hereby also achieve better scores in
downstream tasks.

– Pre-trained as denoising diffusion models for state gen-
eration, neural networks can be transfer-learned for
surrogate modelling. Their performance in these low-
dimensional settings is similar to the deep neural net-
work trained from scratch. Training neural networks as
denoising diffusion models therefore has the potential
for the large-scale pre-training of deep neural networks
for geoscientific problems.

– The pre-trained denoising diffusion model can be ap-
plied to generate an ensemble out of a deterministic
run. By partial diffusion and denoising with the neural
network, we can sample from the attractor in the run’s
surrounding. As a tuning parameter, we can choose the
number of diffusion steps, which controls the portion of
the sampled attractor and the resulting ensemble spread.
Since the denoising network is trained for static state
generation, the generated ensemble is state-dependent
but lacks flow dependency. To introduce such a flow
dependency, the denoising diffusion model must also
be trained with time-dependent states, for example, by
training to generate trajectories.

– The ensemble generated with a pre-trained denoising
diffusion model can define the prior distribution for en-
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semble optimal interpolation to assimilate observations
into a deterministic forecast. Data assimilation with this
sampler can outperform ensemble optimal interpolation
with tuned climatological covariances. The more non-
linear the dynamical system, the larger the gain of sam-
pling a denoising diffusion model can get compared to
static covariances.

Appendix A: A dynamical system point of view on
denoising diffusion models

The diffusion process progressively replaces the signal by
noise, and the denoising NN is trained to invert this process
and can be iteratively used to generate a signal out of pure
noise. In our case, we train the NN to generate states that
should lie on the attractor of a dynamical system. The pro-
cess of generating a signal out of pure noise resembles the
spin-up procedure often used for dynamical systems.

To spin-up dynamical systems, random fields are gener-
ated that lie in the basin of attraction for the dynamical sys-
tem. If these randomly sampled states are integrated with the
dynamical system for enough steps, all states from the basin
of attraction converge to the attractor of the dynamical sys-
tem.

In fact, the diffusion process corresponds to an Itô stochas-
tic differential equation (SDE; Y. Song et al., 2021), inte-
grated in pseudo-time,

dz=m(z,τ )dt + g(τ )dw, (A1)

where m(z,τ ) is the drift coefficient, g(τ ) is the diffusion
coefficient, dt is an infinitesimal-small pseudo-time step,
and dw defines a Wiener (Brownian) process. We can use
ancestral sampling to integrate this SDE, going from the
state distribution p(x)= p(z0) at t = 0 to the prior distribu-
tion p(zT ), Eq. (5), at t = T . Defining m(z,τ )=− 1

2β(τ )z
and g(τ )=

√
β(τ ) with noise scales β(τ ), the variance-

preserving diffusion process is recovered (Y. Song et al.,
2021).

Inverting the process, we start at pseudo-time t = T , with
pure noise drawn from the prior distribution p(zT ), and move
towards the state distribution target p(z0). The inverse of a
diffusion process is again a diffusion process, resulting in the
reverse-time SDE,

dz=
[
m(z,τ )dt − g(τ )2

∇z logp(z)
]

dt + g(τ )dw̃, (A2)

with dw̃ as the reverse-time Wiener process. Remarkably,
the reverse-time SDE, Eq. (A2), is defined by the known
drift and diffusion coefficients and the so-called score func-
tion ∇z logp(z), the gradient that points towards the data-
generating distribution. Consequently, once the score func-
tion is known for all pseudo-time steps, we can use ancestral
sampling to integrate the denoising process, Eq. (A2), and to
generate samples based on noise drawn from the pre-defined
prior distribution.

Similarly to predicting the noise, the state, or an angular
velocity, the score can be approximated by a NN, sθ (zτ ,τ )≈
∇zτ logp(zτ ). Predicting the noise is hereby proportional to
the approximated score function by the relation

ε̂θ (zτ ,τ )=−στ s(zτ ,τ ), (A3)

where the predicted noise points away from data-generating
distribution. Consequently, training the NN to predict the
noise, Eq. (13), is equivalent to score matching (Hyvärinen,
2005; Vincent, 2011; Song et al., 2019).

The simplest method to integrate the SDEs is using an
Euler–Maruyama integration with a fixed step size. This
leads to similar procedures to those specified in Sect. 2. Con-
sequently, sampling with the DDPM or DDIM scheme, as
specified by Eqs. (14) and (15a), corresponds to special dis-
cretizations of the reverse-time SDE (J. Song et al., 2021; Y.
Song et al., 2021), defined in Eq. (A2). However, the formu-
lation of the diffusion process as SDE allows us to use differ-
ent integration methods with adaptive step sizes (Jolicoeur-
Martineau et al., 2022; Dockhorn et al., 2022; Lu et al.,
2022) such that fewer integration steps than with the DDPM
scheme are needed to generate data.

The generation of states with the SDE is a sort of dynam-
ical system, integrated in pseudo-time. The smaller the inte-
gration error, the smaller the approximation error, and the
larger the number of training samples, the smaller the er-
ror between the distribution of generated states and the data-
generating distribution (De Bortoli, 2022), with convergence
in its limit. Therefore, if the NN is trained on samples that
lie on the attractor of the dynamical system, the generated
samples will also lie on this attractor in these limits.

Appendix B: Data assimilation prior distributions
from denoising diffusion models

In the Bayesian formalism of data assimilation, we want to
find the posterior distribution p(xt | y1:t ) of the current state
xt at time t based on all observations y1:t up to the very same
time. We can use Bayes’ theorem to split the posterior distri-
bution into a prior distribution p(xt | y1:t−1) and the obser-
vation likelihood p(yt | xt ),

p(xt | y1:t )=
p(yt | xt )p(xt | y1:t−1)∫
p(yt | x′)p(x′ | y1:t−1)dx′

. (B1)

The influence of past observations y1:t−1 on the current state
is hence encoded into the prior distribution. In data assimi-
lation, we often estimate a deterministic analysis xa

t as the
single best estimate of the posterior. Having access to a geo-
physical forecast model M(·), we can generate a determinis-
tic model forecast xf

t based on the analysis from the previous
time xf

t =M(xa
t−1). Using such a model forecast as a ba-

sis, we can generate an ensemble with a denoising diffusion
model, as introduced in Sect. 3.2. This generated ensemble
can be seen as specifying the prior distribution in the Bayes’
theorem (Eq. B1),
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p(xt | y1:t−1)=
∫
p(xt | zτ,t )p(zτ,t | y1:t−1)dzτ,t (B2)

=

∫ ∫
p(xt | zτ,t )p(zτ,t | xf

t )

p(xf
t | y1:t−1)dxf

tdzτ,t (B3)

=

∫
p(xt | zτ,t )p(zτ,t | xf

t )dzτ,t ,

p(xf
t | y1:t−1)= δ

[
xf
t −M(xa

t−1)
]
, (B4)

=

∫
p(xt | zτ,t )N (zτ,t |

√
ατx

f
t , (1−ατ )I)dzτ,t (B5)

= E
zτ,t∼N

(
√
ατx

f
t ,(1−ατ )I

)[p(xt | zτ,t )
]
. (B6)

The tuning factor for the prior distribution is the number of
partial diffusion steps τ and the signal magnitude ατ . We can
sample from the conditional state distribution given the dif-
fused states p(xt | zτ,t ) by denoising the diffused states. By
partially diffusing the deterministic forecast for τ steps, sam-
pling from the diffused distribution, and denoising with the
neural network, we can thus specify the prior distribution for
data assimilation.

Appendix C: Noise scheduler

We test two different noise schedulers, a linear scheduler and
a cosine scheduler. The resulting signal and noise amplitude
are shown in Fig. C1:

– The linear scheduler linearly increases the relative noise
magnitude βτ (Ho et al., 2020). The relative noise mag-
nitude then specifies the relative signal magnitude α′τ =
βτ , used in Eq. (3). We linearly increase βτ from 0.0001
for τ = 0 to 0.03 for τ = T = 1000. The signal and
noise amplitude are shown as blue lines in Fig. C1.

– The cosine scheduler defines the signal amplitude ατ =
cos(π2

τ ′+s
1+s ) as a shifted cosine function with shift s =

0.008 and τ ′ = τ
1000 (Nichol and Dhariwal, 2021). This

signal amplitude is directly used in Eq. (4) and shown
alongside the noise amplitude as red lines in Fig. C1.

The signal amplitude in the cosine scheduler decays slower
than in the linear scheduler. Generating with a cosine sched-
uler is consequently more concentrated in a high signal-to-
noise ratio regime, which results in a better state generation.

Figure C1. The signal (solid) and noise (dashed) factors for the
linear noise scheduler (blue) and cosine noise scheduler (red) used
here.

Appendix D: Configurations

D1 Denoising network

As a denoising neural network, we use a fully connected
residual neural network. We use a linear layer, mapping from
the three-dimensional state vector to 256 features. Concur-
rently, we apply a sinusoidal time embedding (Vaswani et al.,
2017), where we map the pseudo-time information into 128
sinusoidal features with increasing wavelengths. After these
initial mappings, we apply three residual blocks.

Each residual block has a branch. In the branch, the data
are normalized by layer normalization. The affine transfor-
mations, applied after the normalization, are linearly condi-
tioned on the embedding (Perez et al., 2017). After normaliz-
ing and modulating, we apply a shallow neural network with
256 features and a rectified linear unit (relu) as activation
function. The output of the branch is added to the input to
the residual block.

After the three residual blocks, we linearly combine the
extracted features to get the output of the neural network.
Depending on its parameterization (see also Sect. 2.4), the
output has different meanings. In total, the denoising neural
network has 1.2× 106 parameters.

D2 Background covariance matrix

The ensemble interpolation and 3D-Var experiments in
Sect. 4.3 use a static background covariance matrix. The ma-
trix is based on averaged ensemble covariances from a tuned
ensemble transform Kalman filter with 12 ensemble mem-
bers. Scaled by a tuning factor α, the matrix is tuned for each
experiment independently. The unscaled background covari-
ance matrix is specified in Table D1.
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Table D1. The background covariance matrix as used in the ensem-
ble optimal interpolation and 3D-Var experiments in Sect. 4.3.

x y z

x 0.520 0.747 0.000
y 0.747 1.378 0.001
z 0.000 0.001 1.177

Appendix E: Validation metrics

The scores are estimated based on two different distributions:
q, the generated sample distribution, and p, the testing sam-
ple distribution. In total, we have five different metrics:

– The Hellinger distance is estimated between the empir-
ical probability density functions of q and p. For the
estimation of the Hellinger distance, we discretize the
three-dimensional states into k cubes (Scher and Mes-
sori, 2019) and count the probability for q and p that
a sample lies in the ith cube. In slight abuse of nota-
tion, we denote qi and pi as probabilities for q and p,
respectively.

H (q,p)=
1
√

2

√√√√ k∑
i=1

(√
qi −
√
pi
)2 (E1)

The distance should be 0 if the distributions perfectly
correspond.

– The Fréchet surrogate distance measures the distance
between the distributions in a feature space Aϕ(x) of
an independent neural network, trained here for surro-
gate modelling. For both distributions, the means, µq
and µp, and covariances, 6q and 6p in feature space
are estimated. The Fréchet distance is then given as the
2-Wasserstein distance with a multivariate Gaussian as-
sumption.

FSD
(
N (µq ,6q ),N (µp,6p)

)
= ‖µq −µp‖

2
2

+Tr
(
6q +6p − 2(6

1
2
q6p6

1
2
q )

1
2

)
(E2)

The distance should be 0 if the distributions perfectly
correspond.

– The mean-squared distance from the generated samples
to the nearest test sample measures the closeness of the
test data to the distribution from the generated data. This
metric is dependent on the number of training samples,
as the implicit representation of the distribution depends
on the number of samples.

dgen(q,p)= Ex∼q
[

min
z0∼p
‖x− z0‖

2
2

]
(E3)

The distance should be 0 if the distributions perfectly
correspond.

– The mean-squared distance from the test samples to the
nearest generated sample measures the closeness of the
generated data to the attractor of the dynamical system,
represented by the test data. This metric is independent
of the number of generated samples, as there is always
the same number of test samples.

d test(q,p)= Ez0∼p

[
min
x∼q
‖x− z0‖

2
2

]
(E4)

The distance should be 0 if the distributions perfectly
correspond.

– As a measure for rare events, we use a peak-over-
threshold or peak-under-threshold metric. We determine
the 1st (p0.01) and 99th (p0.99) percentiles along the
three dimensions in the testing data and then measure
how often events below (1st) or above (99th) these per-
centiles occur in the generated samples.

POT(q,p)= Ex∼q
[
P (x ≤ p0.01)+P (x ≥ p0.99)

]
(E5)

If the extremes are correctly represented, the expected
value should be 0.02.

Appendix F: Additional results for the learned
representation

To determine if the denoising neural network can extract fea-
tures about the dynamical system, we can fit linear models
from known polynomial features to the features of the neural
network. First, we extract features from states in the training
dataset with the denoising neural network. Similarly to the
surrogate modelling experiments (Sect. 4.2), we use six dif-
ferent pseudo-time steps. Secondly, we linearly regress from
known polynomial features (x, y, z, xy, xz) to the extracted
features, giving us the input coefficients β in. Thirdly, we lin-
early regress from the extracted features to the derivatives
estimated with the Lorenz 1963 equations, Eqs. (19a)–(19c),
which gives us the output coefficients βout. Fourthly, we mul-
tiply the input coefficients β in by the output coefficients βout,
resulting in a linear factor table β.

The polynomial features and their linear factors are well-
defined by the Lorenz 1963 equations, Eqs. (19a)–(19c).
Consequently, if the feature extractor has learned some
meaningful features about the dynamical system, the linear
factor table β should recover the original factors from the
model. We compare two feature extractors, an untrained ex-
tractor, where the weights are randomly initialized, and a
feature extractor, pre-trained as a denoising diffusion model
(Table F1). The linear factors estimated with the pre-trained
diffusion model fit those from the original Lorenz equations
almost perfectly. By contrast, a random neural network is un-
able to extract such features. This indicates that pre-training
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Table F1. Linear factors between polynomial features and the time
derivative of the Lorenz 1963 system, extracted with (a) an un-
trained diffusion model and (b) a pre-trained diffusion model. The
factors are rounded to the second decimal number. Bold values cor-
respond to factors of the ordinary differential equation (ODE) that
defines the Lorenz 1963 system. Negative zero values, like −0.00,
result from rounding to two decimal numbers.

(a) Untrained ẋ ẏ ż

x −10.00 −12.93 −0.02
y 10.00 10.00 0.04
z 0.00 −0.00 −0.00
xy 0.00 0.00 0.00
xz 0.00 0.00 0.00

(b) Pre-trained ẋ ẏ ż

x −10.00 28.00 0.00
y 10.00 −1.00 −0.00
z −0.00 −0.00 −2.67
xy −0.00 0.00 1.00
xz 0.00 −1.00 −0.00

Figure F1. Visualization of a learned feature of a pre-trained diffu-
sion model with a v parameterization and cosine noise scheduling.
Shown is the activation of the feature with the highest correlation to
the x ·y product (a) projected onto the x–y plane, (b) projected onto
the x–z plane, (c) projected onto the y–z plane, and (d) projected
onto the x · y product.

denoising diffusion models for state generation can learn use-
ful features about the dynamical system itself.

The combined linear coefficients β use all extracted fea-
tures of the neural network. In Fig. F1, we show the feature
that has the highest correlation (r = 0.78) to the x ·y product.
We can see a non-linear dependency between the extracted
feature and the product. Consequently, although the product
is used to estimate the time derivative of z, there is no single
feature that linearly represents this product. Therefore, the
features that represent the dynamical system are entangled in
the features, as represented by the feature extractor.

Code and data availability. The source code for the experiments
and the neural networks is publicly available under https://github.
com/cerea-daml/ddm-attractor (last access: 17 September 2024)
and Zenodo (https://doi.org/10.5281/zenodo.8406184, Finn, 2023).
With the source code, the Lorenz 1963 data needed for the exper-
iments can be reproduced. Exemplary weights for one diffusion
model are additionally contained in the repository. The authors will
provide further access to the weights of the neural networks upon
request.
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