Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-259-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-31-259-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A quest for precipitation attractors in weather radar archives
Loris Foresti
CORRESPONDING AUTHOR
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
Bernat Puigdomènech Treserras
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Canada
Daniele Nerini
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
Aitor Atencia
GeoSphere Austria, Vienna, Austria
Marco Gabella
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
Ioannis V. Sideris
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
Urs Germann
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
Isztar Zawadzki
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Canada
deceased, 11 February 2023
Related authors
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020, https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Short summary
In areas with reduced visibility at the ground level, radar precipitation measurements higher up in the atmosphere need to be extrapolated to the ground and be corrected for the vertical change (i.e. growth and transformation) of precipitation. This study proposes a method based on hydrometeor proportions and machine learning (ML) to apply these corrections at smaller spatiotemporal scales. In comparison with existing techniques, the ML methods can make predictions from higher altitudes.
Seppo Pulkkinen, Daniele Nerini, Andrés A. Pérez Hortal, Carlos Velasco-Forero, Alan Seed, Urs Germann, and Loris Foresti
Geosci. Model Dev., 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019, https://doi.org/10.5194/gmd-12-4185-2019, 2019
Short summary
Short summary
Reliable precipitation forecasts are vital for the society, as water-related hazards can cause economic losses and loss of lives. Pysteps is an open-source Python library for radar-based precipitation forecasting. It aims to be a well-documented platform for development of new methods as well as an easy-to-use tool for practitioners. The potential of the library is demonstrated by case studies and scientific experiments using radar data from Finland, Switzerland, the United States and Australia.
Daniele Nerini, Nikola Besic, Ioannis Sideris, Urs Germann, and Loris Foresti
Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, https://doi.org/10.5194/hess-21-2777-2017, 2017
Short summary
Short summary
Stochastic generators are effective tools for the quantification of uncertainty in a number of applications with weather radar data, including quantitative precipitation estimation and very short-term forecasting. However, most of the current stochastic rainfall field generators cannot handle spatial non-stationarity. We propose an approach based on the short-space Fourier transform, which aims to reproduce the local spatial structure of the observed rainfall fields.
Zackary Mages, Pavlos Kollias, Bernat Puigdomenech Treserras, Paloma Borque, and Mariko Oue
EGUsphere, https://doi.org/10.5194/egusphere-2024-2984, https://doi.org/10.5194/egusphere-2024-2984, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Convective clouds are a key component of the climate system. Using remote sensing observations during two field experiments in Houston, Texas, we identify four diurnal patterns of shallow convective clouds. We find areas more frequently experiencing shallow convective clouds, and we find areas where the vertical extent of shallow convective clouds is higher and where they are more likely to precipitate. This provides insight into the complicated environment that forms these clouds in Houston.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Preprint under review for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024, https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Short summary
We present a verification of two products based on weather radars to detect the presence of hail and estimate its size. Radar products are remote detection of hail, so they must be verified against ground-based observations. We use reports from users of the Swiss Weather Services phone app to do the verification. We found that the product estimating the presence of hail provides fair results but that it should be recalibrated and that estimating the hail size with radar is more challenging.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1554, https://doi.org/10.5194/egusphere-2024-1554, 2024
Short summary
Short summary
At present, most works delved into convective weather nowcasting, only a few works discussed the nowcasting uncertainty for variables in surface level. Hence, we proposed a method to estimate the uncertainty. Generating appropriate noises associated with the characteristic of the error within analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024, https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics. Features such as convective-core growth, for example, are shown. The study found differences in the initiation location of shallow convection and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-2, https://doi.org/10.5194/amt-2024-2, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset, and testes over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023, https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
Short summary
We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The sensors record the exact timing of hailstone impacts, providing valuable information about the local duration of hailfall. We found that the majority of hailfalls lasts just a few minutes and that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022, https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction (
nowcasting) of severe thunderstorms using machine learning. Machine-learning models are trained with data from weather radars, satellite images, lightning detection and weather forecasts and with terrain elevation data. We analyze the benefits provided by each of the data sources to predicting hazards (heavy precipitation, lightning and hail) caused by the thunderstorms.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Hélène Barras, Olivia Martius, Luca Nisi, Katharina Schroeer, Alessandro Hering, and Urs Germann
Weather Clim. Dynam., 2, 1167–1185, https://doi.org/10.5194/wcd-2-1167-2021, https://doi.org/10.5194/wcd-2-1167-2021, 2021
Short summary
Short summary
In Switzerland hail may occur several days in a row. Such multi-day hail events may cause significant damage, and understanding and forecasting these events is important. Using reanalysis data we show that weather systems over Europe move slower before and during multi-day hail events compared to single hail days. Surface temperatures are typically warmer and the air more humid over Switzerland and winds are slower on multi-day hail clusters. These results may be used for hail forecasting.
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021, https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Short summary
We show results from two unique measurement campaigns aimed at better understanding effects of large wind turbines on radar returns by deploying a mobile X-band weather radar system in the proximity of a small wind park. Measurements were taken in 24/7 operation with dedicated scan strategies to retrieve the variability and most extreme values of reflectivity and radar cross-section of the wind turbines. The findings are useful for wind turbine interference mitigation measures in radar systems.
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020, https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Short summary
In areas with reduced visibility at the ground level, radar precipitation measurements higher up in the atmosphere need to be extrapolated to the ground and be corrected for the vertical change (i.e. growth and transformation) of precipitation. This study proposes a method based on hydrometeor proportions and machine learning (ML) to apply these corrections at smaller spatiotemporal scales. In comparison with existing techniques, the ML methods can make predictions from higher altitudes.
Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi
Atmos. Meas. Tech., 12, 5573–5591, https://doi.org/10.5194/amt-12-5573-2019, https://doi.org/10.5194/amt-12-5573-2019, 2019
Short summary
Short summary
This paper presents an analysis of the lightning production of convective cells. Polarimetric weather radar data were used to identify and characterize the convective cells while lightning was detected using the EUCLID network and a lightning mapping array deployed during the summer of 2017 in the northeastern part of Switzerland. In it we show that there is a good correlation between the height of the rimed-particle column and the intensity of the lightning activity in the convective cell.
Seppo Pulkkinen, Daniele Nerini, Andrés A. Pérez Hortal, Carlos Velasco-Forero, Alan Seed, Urs Germann, and Loris Foresti
Geosci. Model Dev., 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019, https://doi.org/10.5194/gmd-12-4185-2019, 2019
Short summary
Short summary
Reliable precipitation forecasts are vital for the society, as water-related hazards can cause economic losses and loss of lives. Pysteps is an open-source Python library for radar-based precipitation forecasting. It aims to be a well-documented platform for development of new methods as well as an easy-to-use tool for practitioners. The potential of the library is demonstrated by case studies and scientific experiments using radar data from Finland, Switzerland, the United States and Australia.
Pavlos Kollias, Bernat Puigdomènech Treserras, and Alain Protat
Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019, https://doi.org/10.5194/amt-12-4949-2019, 2019
Short summary
Short summary
Profiling millimeter-wavelength radars are the cornerstone instrument of surface-based observatories. Calibrating these radars is important for establishing a long record of observations suitable for model evaluation and improvement. Here, the CloudSat CPR is used to assess the calibration of a record over 10 years long of ARM cloud radar observations (a total of 44 years). The results indicate that correction coefficients are needed to improve record reliability and usability.
Jordi Figueras i Ventura, Nicolau Pineda, Nikola Besic, Jacopo Grazioli, Alessandro Hering, Oscar A. van der Velde, David Romero, Antonio Sunjerga, Amirhossein Mostajabi, Mohammad Azadifar, Marcos Rubinstein, Joan Montanyà, Urs Germann, and Farhad Rachidi
Atmos. Meas. Tech., 12, 2881–2911, https://doi.org/10.5194/amt-12-2881-2019, https://doi.org/10.5194/amt-12-2881-2019, 2019
Short summary
Short summary
This paper presents an analysis of a large dataset of lightning and polarimetric weather radar data collected over the course of a lightning measurement campaign that took place in the summer of 2017 in the area surrounding Säntis in northeastern Switzerland. We show that polarimetric weather radar data can be helpful in determining regions where lightning is more likely to occur, which is a first step towards a lightning nowcasting system.
Clemens Wastl, Yong Wang, Aitor Atencia, and Christoph Wittmann
Geosci. Model Dev., 12, 261–273, https://doi.org/10.5194/gmd-12-261-2019, https://doi.org/10.5194/gmd-12-261-2019, 2019
Short summary
Short summary
Ensemble forecasting at the convection-permitting scale (< 3 km) requires new methodologies in representing model uncertainties. In this paper a new stochastic scheme is proposed and tested in the complex terrain of the Alps. In this scheme the tendencies of the physical parametrizations are perturbed separately, which sustains a physically consistent relationship between the processes. This scheme increases the stability of the model and leads to improvements in the probabilistic performance.
Manuel Antonetti, Christoph Horat, Ioannis V. Sideris, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 19–40, https://doi.org/10.5194/nhess-19-19-2019, https://doi.org/10.5194/nhess-19-19-2019, 2019
Short summary
Short summary
To predict timing and magnitude peak run-off, meteorological and calibrated hydrological models are commonly coupled. A flash-flood forecasting chain is presented based on a process-based run-off generation module with no need for calibration. This chain has been evaluated using data for the Emme catchment (Switzerland). The outcomes of this study show that operational flash predictions in ungauged basins can benefit from the use of information on run-off processes.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Floor van den Heuvel, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 5181–5198, https://doi.org/10.5194/amt-11-5181-2018, https://doi.org/10.5194/amt-11-5181-2018, 2018
Short summary
Short summary
The paper aims at characterising and quantifying the spatio-temporal variability of the melting layer (ML; transition zone from solid to liquid precipitation). A method based on the Fourier transform is found to accurately describe different ML signatures. Hence, it is applied to characterise the ML variability in a relatively flat area and in an inner Alpine valley in Switzerland, where the variability at smaller spatial scales is found to be relatively more important.
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Short summary
In this paper we propose an innovative approach for hydrometeor de-mixing, i.e., to identify and quantify the presence of mixtures of different hydrometeor types in a radar sampling volume. It is a bin-based approach, inspired by conventional decomposition methods and evaluated using C- and X-band radar measurements compared with synchronous ground observations. The paper also investigates the potential influence of incoherency in the backscattering from hydrometeor mixtures in a radar volume.
Daniele Nerini, Nikola Besic, Ioannis Sideris, Urs Germann, and Loris Foresti
Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, https://doi.org/10.5194/hess-21-2777-2017, 2017
Short summary
Short summary
Stochastic generators are effective tools for the quantification of uncertainty in a number of applications with weather radar data, including quantitative precipitation estimation and very short-term forecasting. However, most of the current stochastic rainfall field generators cannot handle spatial non-stationarity. We propose an approach based on the short-space Fourier transform, which aims to reproduce the local spatial structure of the observed rainfall fields.
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary
Short summary
In this paper we propose a novel semi-supervised method for hydrometeor classification, which takes into account both the specificities of acquired polarimetric radar measurements and the presumed electromagnetic behavior of different hydrometeor types. The method has been applied on three datasets, each acquired by different C-band radar from the Swiss network, and on two X-band research radar datasets. The obtained classification is found to be of high quality.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
Related subject area
Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Selecting and weighting dynamical models using data-driven approaches
Robust weather-adaptive post-processing using model output statistics random forests
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics
Enhancing geophysical flow machine learning performance via scale separation
Training a convolutional neural network to conserve mass in data assimilation
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
From research to applications – examples of operational ensemble post-processing in France using machine learning
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024, https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Short summary
The goal of this paper is to weight several dynamic models in order to improve the representativeness of a system. It is illustrated using a set of versions of an idealized model describing the Atlantic Meridional Overturning Circulation. The low-cost method is based on data-driven forecasts. It enables model performance to be evaluated on their dynamics. Taking into account both model performance and codependency, the derived weights outperform benchmarks in reconstructing a model distribution.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023, https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Short summary
This study investigates vertical localization based on a convection-permitting 1000-member ensemble simulation. We derive an empirical optimal localization (EOL) that minimizes sampling error in 40-member sub-sample correlations assuming 1000-member correlations as truth. The results will provide guidance for localization in convective-scale ensemble data assimilation systems.
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023, https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary
Short summary
The impact of climate change on weather pattern dynamics over the North Atlantic is explored through the lens of information theory. These tools allow the predictability of the succession of weather patterns and the irreversible nature of the dynamics to be clarified. It is shown that the predictability is increasing in the observations, while the opposite trend is found in model projections. The irreversibility displays an overall increase in time in both the observations and the model runs.
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021, https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Short summary
Forecasting the height of new snow is essential for avalanche hazard surveys, road and ski resort management, tourism attractiveness, etc. Météo-France operates a probabilistic forecasting system using a numerical weather prediction system and a snowpack model. It provides better forecasts than direct diagnostics but exhibits significant biases. Post-processing methods can be applied to provide automatic forecasting products from this system.
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021, https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021, https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary
Short summary
The assimilation of observations using standard algorithms can lead to a violation of physical laws (e.g. mass conservation), which is shown to have a detrimental impact on the system's forecast. We use a neural network (NN) to correct this mass violation, using training data generated from expensive algorithms that can constrain such physical properties. We found that, in an idealized set-up, the NN can match the performance of these expensive algorithms at negligible computational costs.
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020, https://doi.org/10.5194/npg-27-373-2020, 2020
Short summary
Short summary
The performance of three machine-learning methods for data-driven modeling of a multiscale chaotic Lorenz 96 system is examined. One of the methods is found to be able to predict the future evolution of the chaotic system well from just knowing the past observations of the large-scale component of the multiscale state vector. Potential applications to data-driven and data-assisted surrogate modeling of complex dynamical systems such as weather and climate are discussed.
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020, https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Short summary
Statistical post-processing of ensemble forecasts is now a well-known procedure in order to correct biased and misdispersed ensemble weather predictions. But practical application in European national weather services is in its infancy. Different applications of ensemble post-processing using machine learning at an industrial scale are presented. Forecast quality and value are improved compared to the raw ensemble, but several facilities have to be made to adjust to operational constraints.
Cited articles
Abarbanel, H.: Analysis of Observed Chaotic Data, Springer, https://doi.org/10.1007/978-1-4612-0763-4, 1997. a, b
Alberti, T., Faranda, D., Lucarini, V., Donner, R. V., Dubrulle, B., and Daviaud, F.: Scale dependence of fractal dimension in deterministic and stochastic Lorenz-63 systems, Chaos, 33, 023144, https://doi.org/10.1063/5.0106053, 2023. a
Atencia, A. and Zawadzki, I.: A comparison of two techniques for generating nowcasting ensembles. Part I: Lagrangian ensemble technique, Mon. Weather Rev., 142, 4036–4052, 2014. a
Atencia, A. and Zawadzki, I.: A comparison of two techniques for generating nowcasting ensembles. Part II: Analogs selection and comparison of techniques, Mon. Weather Rev., 143, 2890–2908, 2015. a
Atencia, A., Zawadzki, I., and Fabry, F.: Rainfall attractors and predictability, in: 36th Conference on Radar Meteorology, 16–20 September, Breckenridge, Colorado, https://ams.confex.com/ams/36Radar/webprogram/Paper228759.html (last access: 21 June 2024), 2013. a
Berenguer, M., Sempere-Torres, D., and Pegram, G. G.: SBMcast: An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation, J. Hydrol., 404, 226–240, 2011. a
De Cruz, L., Schubert, S., Demaeyer, J., Lucarini, V., and Vannitsem, S.: Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models, Nonlin. Processes Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-387-2018, 2018. a
Fabry, F., Meunier, V., Treserras, B., Cournoyer, A., and Nelson, B.: On the climatological use of radar data mosaics: possibilities and challenges, B. Am. Meteorol. Soc., 98, 2135–2148, 2017. a
Federal Office of Meteorology and Climatology MeteoSwiss and OGD@MeteoSwiss project team: Open Government Data (OGD) provision, Github, https://github.com/MeteoSwiss/publication-opendata/, last access: 21 June 2024. a
Foresti, L., Sideris, I. V., Panziera, L., Nerini, D., and Germann, U.: A 10-year radar-based analysis of orographic precipitation growth and decay patterns over the Swiss Alpine region, Q. J. Roy. Meteor. Soc., 144, 2277–2301, https://doi.org/10.1002/qj.3364, 2018. a, b
Foresti, L., Sideris, I. V., Nerini, D., Beusch, L., and Germann, U.: Using a 10-year radar archive for nowcasting precipitation growth and decay – a probabilistic machine learning approach, Weather Forecast., 34, 1547–1569, https://doi.org/10.1175/WAF-D-18-0206.1, 2019. a
Franch, G., Jurman, G., Coviello, L., Pendesini, M., and Furlanello, C.: MASS-UMAP: Fast and Accurate Analog Ensemble Search in Weather Radar Archives, Remote Sens., 11, 2922, https://doi.org/10.3390/rs11242922, 2019. a
Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar precipitation measurement in a mountainous region, Q. J. Roy. Meteor. Soc., 132, 1669–1692, 2006a. a
Germann, U., Zawadzki, I., and Turner, B.: Predictability of Precipitation from Continental Radar Images. Part IV: Limits to Prediction, J. Atmos. Sci., 63, 2092–2108, https://doi.org/10.1175/JAS3735.1, 2006b. a, b, c
Germann, U., Boscacci, M., Clementi, L., Gabella, M., Hering, A., Sartori, M., Sideris, I. V., and Calpini, B.: Weather Radar in Complex Orography, Remote Sens., 14, 503, https://doi.org/10.3390/rs14030503, 2022. a
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Multifractal and spatio-temporal analysis of the rainfall output of the Meso-NH model and radar data, Hydrolog. Sci. J., 56, 380–396, https://doi.org/10.1080/02626667.2011.564174, 2011. a, b, c
Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange attractors, Phys. D, 9, 189–208, 1983. a
Houze, R.: Cloud Dynamics, Academic Press, ISBN 9780123742667, 2014. a
Jameson, A., Larsen, M., and Kostinski, A.: On the Detection of Statistical Heterogeneity in Rain Measurements, J. Atmos. Ocean. Tech., 35, 1399–1413, 2018. a
Jolliffe, I.: Principal Component Analysis, 2nd Edn., Springer, https://doi.org/10.1007/978-1-4757-1904-8, 2002. a, b
Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, 2nd Edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511755798, 2004. a, b
Koutsoyiannis, D.: On the quest of chaotic attractors in hydrological processes, Hydrolog. Sci., 51, 1065–1091, 2006. a
Koutsoyiannis, D. and Pachakis, D.: Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series, J. Geophys. Res.-Atmos., 101, 26441–26451, 1996. a
Li, J. and Ding, R.: Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues, Mon. Weather Rev., 139, 3265–3283, 2011. a
Lichtenberg, A. J. and Lieberman, M. A.: Regular and Chaotic Dynamics, no. 38 in Applied Mathematical Sciences, Springer-Verlag, New York, NY, 2nd Edn., https://doi.org/10.1007/978-1-4757-2184-3, 1992. a, b
Link, R., Snyder, A., Lynch, C., Hartin, C., Kravitz, B., and Bond-Lamberty, B.: Fldgen v1.0: an emulator with internal variability and space–time correlation for Earth system models, Geosci. Model Dev., 12, 1477–1489, https://doi.org/10.5194/gmd-12-1477-2019, 2019. a
Lorenz, E. N.: Dimensions of weather and climate attractors, Letters to Nature, 353, 241–244, 1991. a
Lorenz, E. N.: Predictability – a problem partly solved, in: Proc. Seminar on Predictability, Volume 1. European Centre for Medium-Range Weather Forecast, Shinfield Park, Reading, Berkshire, United Kingdom, https://doi.org/10.1017/CBO9780511617652.004, 1996. a, b
Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and Multifractal Cascades, Cambridge University Press, https://doi.org/10.1017/CBO9781139093811, 2013. a, b, c
Menabde, M.: Bounded lognormal cascades as quasi-multiaffine random processes, Nonlin. Processes Geophys., 5, 63–68, https://doi.org/10.5194/npg-5-63-1998, 1998. a
Nerini, D., Foresti, L., Leuenberger, D., Robert, S., and Germann, U.: A reduced-space ensemble Kalman filter approach for flow-dependent integration of radar extrapolation nowcasts and NWP precipitation ensembles, Mon. Weather Rev., 147, 987–1006, https://doi.org/10.1175/MWR-D-18-0258.1, 2019. a, b
Nicolis, C., Vannitsem, S., and Royer, J.-F.: Short-range predictability of the atmosphere: Mechanisms for superexponential error growth, Q. Roy. Meteor. Soc., 121, 705–722, 1995. a
Palmer, T. and Hagedorn, R. (Eds.): Predictability of Weather and Climate, Cambridge University Press, https://doi.org/10.1017/CBO9780511617652, 2006. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pons, F., Messori, G., and Faranda, D.: Statistical performance of local attractor dimension estimators in non-Axiom A dynamical systems, Chaos, 33, 073143, https://doi.org/10.1063/5.0152370, 2023. a
Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., and Foresti, L.: Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0), Geosci. Model Dev., 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019, 2019. a
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008. a
Schiemann, R., Liniger, M., and Frei, C.: Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland, J. Geophys. Res., 115, D14109, https://doi.org/10.1029/2009JD013047, 2010. a
Sideris, I.: Measure of orbital stickiness and chaos strength, Phys. Rev. E, 73, 066217, https://doi.org/10.1103/PhysRevE.73.066217, 2006. a
Sideris, I. V., Foresti, L., Nerini, D., and Germann, U.: NowPrecip: localized precipitation nowcasting in the complex terrain of Switzerland, Q. J. Roy. Meteor. Soc., 146, 1768–1800, https://doi.org/10.1002/qj.3766, 2020. a, b, c
Simoncelli, E. and Olshausen, B.: Natural image statistics and neural representation, Annu. Rev. Neurosci., 4, 1193–2216, 2001. a
Sivakumar, B., Berndtsson, R., Olsson, J., and Jinno, K.: Reply to “Which chaos in the rainfall-runoff process”, Hydrolog. Sci. J., 47, 149–158, 2001a. a
Sivakumar, B., Berndtsson, R., Olsson, J., and Jinno, K.: Evidence of chaos in the rainfall-runoff process, Hydrolog. Sci. J., 46, 131–145, 2001b. a
Surcel, M., Zawadzki, I., and Yau, M. K.: A study on the scale dependence of the predictability of precipitation patterns, J. Atmos. Sci., 72, 216–235, 2015. a
Toth, Z.: Estimation of atmospheric predictability by circulation analogues, Mon. Weather Rev., 119, 65–72, 1991. a
Villarini, G. and Krajewski, W.: Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall, Surv. Geophys., 31, 107–129, https://doi.org/10.1007/s10712-009-9079-x, 2010. a
Short summary
We compared two ways of defining the phase space of low-dimensional attractors describing the evolution of radar precipitation fields. The first defines the phase space by the domain-scale statistics of precipitation fields, such as their mean, spatial and temporal correlations. The second uses principal component analysis to account for the spatial distribution of precipitation. To represent different climates, radar archives over the United States and the Swiss Alpine region were used.
We compared two ways of defining the phase space of low-dimensional attractors describing the...