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Abstract. Archives of composite weather radar images represent an invaluable resource to study the predictabil-
ity of precipitation. In this paper, we compare two distinct approaches to construct empirical low-dimensional
attractors from radar precipitation fields. In the first approach, the phase space variables of the attractor are de-
fined using the domain-scale statistics of precipitation fields, such as the mean precipitation, fraction of rain, and
spatial and temporal correlations. The second type of attractor considers the spatial distribution of precipitation
and is built by principal component analysis (PCA). For both attractors, we investigate the density of trajectories
in phase space, growth of errors from analogue states, and fractal properties. To represent different scales and
climatic and orographic conditions, the analyses are done using multi-year radar archives over the continental
United States (≈ 4000× 4000 km2, 21 years) and the Swiss Alpine region (≈ 500× 500 km2, 6 years).

1 Introduction

Precipitation is challenging to forecast. The difficulty is
due to its large space–time variability (e.g. Lovejoy and
Schertzer, 2013), the many non-linear processes involved
(e.g. Houze, 2014), and the resulting chaotic behaviour of
the atmosphere (e.g. Lorenz, 1963), among others.

As a result, a rapid loss of precipitation predictability is
observed for both extrapolation-based nowcasting and nu-
merical weather prediction (NPW)-based forecasting (e.g.
Surcel et al., 2015). Such limits to predictability drive the
need for more accurate estimates of forecast uncertainty to
enable informed decision-making.

Lorenz (1996) defines two types of predictability:

– intrinsic predictability: “the extent to which prediction
is possible if an optimum procedure is used”;

– practical predictability: “the extent to which we are able
to predict by the best-known procedures”.

The goal of forecasting is to design models whose practi-
cal predictability is as close as possible to the intrinsic pre-
dictability while representing the remaining uncertainty.

Studies on atmospheric predictability are either model-
based or observation-based: see a review in Lorenz (1996)
and Germann et al. (2006b). Modelling studies use either
idealized systems of equations (e.g. Lorenz, 1963) or NWP
models (e.g. Palmer and Hagedorn, 2006). One disadvantage
of such methods is related to the strong assumptions about
how precipitation processes are represented in the models.

Observation-based predictability studies comprise statis-
tical extrapolation methods (e.g. Germann et al., 2006b)
and naturally occurring analogues (e.g. Lorenz, 1969). Com-
mon challenges are related to the presence of measurement
uncertainty, the assumption of attractor smoothness (e.g.
Takens, 1981) and the limited size of archives (e.g. Toth,
1991; Van Den Dool, 1994), which only allows analogues
of “mediocre” quality to be found (Lorenz, 1969). Precip-
itation brings further challenges due to its truncated non-
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260 L. Foresti et al.: A weather radar attractor

Gaussian distribution and intermittent and multifractal prop-
erties (Schertzer and Lovejoy, 1987; Lovejoy and Schertzer,
2013).

Atencia and Zawadzki (2017) used the Lorenz63 system
to compare the growth of errors (spread) from analogue
states with the one obtained from standard perturbation tech-
niques used in NWP ensemble forecasting. They showed that
analogues display a similar initial error growth but contain
more information throughout the forecast. Therefore, despite
the limitations of observation-based studies, analogues have
good potential to complement predictability studies.

Inspired by Atencia et al. (2013), this study aims to
construct low-dimensional attractors from weather radar
archives to shed new light on the intrinsic predictability of
precipitation. We compare two distinct approaches to con-
struct the attractor. The first is a deductive approach based on
prior knowledge, where the phase space variables are defined
based on domain expertise and (forecast) application require-
ments. The second is an inductive approach, where the phase
space variables are extracted from the data without prior as-
sumptions (except those required by principal component
analysis, PCA). This research has an exploratory character
and focuses on what worked and did not work in our quest
for the precipitation attractor. The careful reader will notice
that the methodology of the Swiss and US attractors is not
100 % consistent. Indeed, most of the research started inde-
pendently and only converged into this paper at a later stage.
Less successful experiments in one attractor were not repli-
cated onto the other, where we preferred to explore more
promising directions. Consequently, the results of the paper
will not be interpreted in quantitative and absolute terms, but
rather in qualitative terms. The investigation of the qualitative
differences between the two attractors, in both the methodol-
ogy and the results, triggered fruitful discussions.

In this paper, we want to answer the following questions.

– What do we learn about the predictability of precipita-
tion from weather radar archives?

– How do we define the phase space of the attractor?

– What is the typical growth of errors from analogues?

– How does predictability depend on scale?

– In which way is the attractor relevant for short-term pre-
cipitation forecasting and stochastic simulation?

The paper is structured as follows. Section 2 describes
the two radar archives and the conceptual framework. Sec-
tion 3 defines the attractor based on domain-scale statistics
and presents analyses of its properties. The same is done in
Sect. 4 using principal component analysis. Section 5 con-
cludes the paper and discusses future perspectives. Statistical
techniques are detailed in the Appendix.

Table 1. Characteristics of the Swiss and US radar datasets. ∗ Num-
ber of images with wet area ratio ≥ 5 %.

Domain United States Switzerland

Domain size 4096× 4096 km2 512× 512 km2

Grid points (M) 1′048′576 262′144
Spatial resolution 4 km 1 km
Temporal resolution 15 min 5 min
Period 1996–2016 2005–2010
N images (with precipitation) ≈ 700000 ≈ 210000∗

N images (theoretical maximum) 736 416 631008

2 Data and conceptual framework

2.1 Archives of composite radar images

The US and Swiss radar datasets are described in Table 1.
The US data are produced by the operational S-band Weather
Surveillance Radar-1988 Doppler network (WSR-88D) cov-
ering the continental United States (CONUS). The archive
spans a 21-year period from 1996 to 2016 and was obtained
by interpolating four different radar composite products to a
common 4 km resolution grid. Radar products comprise the
maximum echo from any radar (1996–2007) as well as more
advanced products removing ground clutter and blending of
multiple radars; see more details in Atencia and Zawadzki
(2015) and Fabry et al. (2017). For computational reasons,
the temporal resolution was reduced from 5 to 15 min and
a smaller domain of 4096× 4096 km2 was extracted (see
Fig. 1). When needed, data were upscaled by averaging the
rain rate in linear units using the Marshall–Palmer Z–R rela-
tionshipZ = 300R1.5. Note that radar visibility on the Rocky
Mountains is rather limited by the large inter-radar distances,
which is the reason why the domain is cut (see Appendix F).

The Swiss data comprise the quantitative precipitation
estimation (QPE) product, which integrates measurements
from three Doppler C-band weather radars (Germann et al.,
2006a). The archive covers a 6-year period from 2005 to
2010 and has a spatial resolution of 1 km and a temporal
resolution of 5 min. The domain was reduced to a square
512 km grid centred over Switzerland (see Fig. 3a). The
radar network was upgraded to dual polarization in 2011 and
equipped with two new radars in 2014 and 2016 to improve
the coverage in the inner Alpine valleys (e.g. Germann et al.,
2022). To avoid temporal inhomogeneity in the archive intro-
duced by the switch to the new radar generation, in this study
we did not include data after 2011.

Radar-based QPE is inevitably affected by uncertainty due
to e.g. the Z–R relationship, variability of the vertical pro-
file of reflectivity, signal attenuation and residual clutter (e.g.
Villarini and Krajewski, 2010). However, these uncertainties
are not expected to substantially alter the main findings of
this paper, as we concluded in a related paper using Swiss
radar data (Foresti et al., 2018).
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Figure 1. (a) Continental US analysis domain of 4096× 4096 km2 (white background indicates the radar composite coverage). (b) Swiss
analysis domain of 512×512 km2 (the lighter grey background indicates the radar composite coverage, the black text the location and height
of weather radars, and the white text the location and height of important mountain peaks). The US domain surface is 64 times larger than
the Swiss domain.

2.2 Is the radar archive large enough?

Inspired by Van Den Dool (1994), in Fig. 2 we estimated
the minimum size of the radar archive needed to obtain suf-
ficiently good analogues. We used the US dataset and tar-
geted a spatial resolution of 4 km. The method analyses the
dependence between the archive size and the smallest scal-
ing distance r between real analogues, which is detected as
a “crossing” point in the log–log plot of r vs. the correlation
integral Cr (see Appendix D). More precisely, it consists of
the following steps:

1. calculating the correlation dimension log–log plot for
increasing archive sizes (Fig. 2a);

2. detecting the “crossing” points, i.e. the smallest scaling
distance between real analogues for increasing archive
sizes (squares in Fig. 2a);

3. selecting the largest correlation dimension (correspond-
ing to the largest archive) and extrapolating the linear
fit to obtain the correlation integral Cr associated with
the desired resolution of r = 4 km, i.e. C4 km = 10−30

(≈ radar observation error) (Fig. 2b); and

4. plotting the archive size vs. the Cr values of the cross-
ing points and extrapolating the resulting fit to the de-
sired C4 km = 10−30 to obtain the required archive size
(Fig. 2c).

The point of crossing is detected on the log(r)−log(Cr ) curve
(Fig. 2a). It represents the point of maximum curvature be-
tween the steep scaling region in the middle of the curve
and the flat region on its left (small radii). The flattening at
small scales is due to the temporal correlation of the data, i.e.
the consequence of estimating Cr on temporally correlated

points (trajectories) rather than independent points (succes-
sive radar images are not real independent analogues). In
contrast, the flattening on the right of the curve (large radii)
occurs when the radii become larger than the subspace occu-
pied by the attractor.

According to this analysis, for C4 km = 10−30 the num-
ber of points required to find good analogues is 3.41× 1026,
which corresponds to 9.73× 1021 years. This result is based
on the degrees of freedom of the image, which correspond
to the number of pixels. Consequently, the only way of find-
ing “good” analogues from the radar datasets is to reduce the
degrees of freedom by defining a lower-dimensional phase
space, which is the main objective of this paper.

2.3 From a high-dimensional dataset to a
low-dimensional attractor

An archive of radar rainfall fields can be structured as a tem-
poral sequence of images into a 2D array of size N ×M:

XN,M =


x1,1 x1,2 · · · x1,M
x2,1 x2,2 · · · x2,M
...

...
. . .

...

xN,1 xN,2 · · · xN,M

 , (1)

where x1,2 is the rain rate at time index 1 and pixel index 2,
N is the number of radar rainfall fields, andM is the number
of grid points within a field. That is, each row is a flattened
radar image. Hence, a sequence of rainfall fields represents
a trajectory in an M-dimensional phase space, where M =
512×512= 262144 for the Swiss domain and M = 1024×
1024= 1048576 for the US domain.

A common approach to studying non-linear dynamical
systems is to look at the evolution of trajectories in the phase
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Figure 2. Estimation of the theoretical size of the archive needed
to find good radar analogues at 4 km resolution in the US. (a) Es-
timation of the correlation dimension and the point of crossing for
increasing archive sizes (purple to red colours). (b) Estimation of
the correlation dimension associated with a distance r = 4. (c) Esti-
mation of the archive size needed to reach C4 km from the points of
crossing.

space of governing variables (e.g. Lorenz, 1963; Abarbanel,
1997; Kantz and Schreiber, 2004). In this paper, the govern-
ing variables of the precipitation system are assumed to be
the domain-scale statistics or principal components extracted
from the high-dimensional radar archive.

The attractor represents the subspace attracting the trajec-
tories of atmospheric states, in our case radar precipitation
fields, starting from any initial condition within the phase
space. Chaotic systems, i.e. systems with sensitive depen-
dence on initial conditions, never cross the same trajectory
again and generate “strange” attractors, which have a non-
integer intrinsic dimension (fractal dimension). The Lorenz
system and the atmosphere are two examples of strange at-
tractors. The strange attractor of this study is the ensemble
of possible states and trajectories derived from weather radar
images that are consistent with the precipitation climatology
of a given region.

2.4 Measuring error growth

As time passes, divergence between two initially close states
in phase space increases, which is generally referred to as
error growth (or spread growth). Idealized chaotic systems
show three distinct regions of error growth: (1) an exponen-
tial growth at the start, (2) a power law growth, and (3) a
region of saturation (loss of predictability); see for example
Nicolis et al. (1995) and Atencia and Zawadzki (2017).

The established way of estimating the initial growth of er-
rors, and therefore inferring the predictability of the system,
is to compute Lyapunov exponents (e.g. Abarbanel, 1997;
Kantz and Schreiber, 2004). Lyapunov exponents measure
the rate of exponential error growth assuming an infinites-
imally small initial error and an infinite lead time, while
the maximum Lyapunov exponent is a measure of chaos
strength (e.g. Lichtenberg and Lieberman, 1992). Unfortu-
nately, such conditions are only met in idealized systems of
equations (e.g. De Cruz et al., 2018). Such conditions are
never observed with atmospheric measurements, whose ana-
logue states have too high initial errors and measurement
noise. Therefore, in this paper we looked for practical al-
ternatives to Lyapunov exponents. Depending on the experi-
ment, we computed as a function of lead time the

– standard deviation (σ ) of analogues around their mean

s1(t)=

√√√√ 1
N − 1

N∑
i=1
||xi(t)− x(t)||2 (2)

and

– half the difference between the 84th and 16th percentiles
of the distribution of analogue states:

s2(t)= [Q84(t)−Q16(t)]/2, (3)

which is analogous to s1 for a Gaussian distribution.
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The analyses of the US attractor used only Eq. (2), while
the ones of the Swiss attractor used both Eqs. (2) and (3).
For simplicity, we refer to them as spread or error. The
spread was further normalized by the sample climatological
spread computed over the whole archive, so that saturation is
reached around the value of 1 (comparable to selecting ran-
dom analogues). The techniques to retrieve two (or more)
close states are briefly described in the corresponding sec-
tions presenting the results.

2.5 Fractal properties of the attractor

Fractal properties of the attractor can give useful insights into
its intrinsic dimensionality. In this paper, we combined the
time-delay embedding and Grassberger–Procaccia correla-
tion dimension methods (Grassberger and Procaccia, 1983).

The approach works by iteratively increasing the dimen-
sionality of embedding spaceD (by time delay) until the esti-
mated fractal dimension f (by Grassberger–Procaccia) con-
verges to a finite value. When this point is reached, the attrac-
tor is completely unfolded, which may be evidence of a sys-
tem driven by low-dimensional chaotic dynamics (and thus
characterized by predictability). In contrast, the inability to
converge towards a finite dimension would indicate the pres-
ence of unpredictable stochastic processes. Appendices C
and D describe the time-delay and Grassberger–Procaccia
methods and provide some references describing their known
limitations.

3 Precipitation attractors based on domain-scale
statistics

3.1 Extracting phase space variables

There are many summary spatial and temporal statistics that
can be extracted from precipitation fields and used as phase
space variables, which we refer to here as domain-scale
statistics. Keeping in mind that the attractor will be used
for precipitation nowcasting or forecasting, we aim to ex-
tract variables that are relevant for those specific tasks. Sev-
eral probabilistic precipitation nowcasting systems generate
an ensemble nowcast by adding spatially and temporally cor-
related random perturbations to a deterministic extrapola-
tion (e.g. Pegram and Clothier, 2001; Bowler et al., 2006;
Berenguer et al., 2011; Atencia and Zawadzki, 2014; Nerini
et al., 2017; Pulkkinen et al., 2019; Sideris et al., 2020). Such
stochastic methods typically need to reproduce the following
properties of precipitation fields.

– The Fourier transform of the field (power spectrum),
which is used to generate stochastic precipitation fields
with a given spatial autocorrelation (e.g. Schertzer and
Lovejoy, 1987; Pegram and Clothier, 2001)

– The fraction of precipitation, which imposes the correct
amount of zero precipitation (intermittency) on the spa-
tially correlated field

– The mean precipitation, which re-scales the non-zero
values to reproduce the observed precipitation distribu-
tion

– The temporal autocorrelation of precipitation fields,
which is used by auto-regressive processes to make pre-
cipitation fields evolve over time

Note that it is also possible to condition the stochastic pre-
cipitation fields to the spatially localized fraction of precipi-
tation, mean precipitation and Fourier transform (e.g. Nerini
et al., 2017; Sideris et al., 2020).

A radially averaged 1D power spectrum (RAPS) can
be derived from the 2D Fourier power spectrum (see Ap-
pendix A). The RAPS is one simple approach to check
whether the precipitation field exhibits scale invariance
within a given range of spatial scales, which is manifested in
a power law relationship between the logarithm of the scale
(spatial frequency) and the logarithm of the power spectrum:

P (k)∝ k−β ,

log
(
P (k)

)
∝ β log

(
k
)
, (4)

where P is the Fourier power spectral density, k is the spa-
tial frequency, and β is the slope of the power law, called
the scaling exponent or spectral slope. β can be derived by
ordinary least squares from the log–log plot of frequency
against power. The Fourier transform can only account for
the scaling of the second moment (variance), known as sim-
ple scaling. Multifractal approaches can handle the scaling of
higher-order moments together with the intermittency of the
field within a unified framework (e.g. Lovejoy and Schertzer,
2013).

Because rainfall rates often follow a log-normal distribu-
tion, it is more convenient to perform the Fourier transform
on the reflectivity (Z) or rainfall rate (R) transformed in
multiplicative units, i.e. dBZ= 10log10(Z/Z0) and dBR=
10log10(R/R0), respectively, where Z0 = 1 mm6 m−3 and
R0 = 1 mm h−1. In addition, before performing the Fourier
transform, we recommend setting all values below a cho-
sen minimum threshold to the minimum threshold itself (e.g.
xi < 0.1 7−→ 0.1 mm−1, ∀i). This operation removes weak
precipitation signals and smooths the resulting sharp corners
of the rain–no-rain transition, which reduces the overestima-
tion of power at high frequencies β (e.g. Nerini et al., 2017).

Several summary, spatial and temporal statistics were de-
rived for the Swiss and US attractors, for instance:

– WAR: wet area ratio (Pegram and Clothier, 2001). Per-
centage of wet (rainy) pixels over the radar composite
domain (≥ 0.1 mm h−1).

– Area coverage: number of wet pixels over the radar
composite domain. This is similar to WAR.
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– IMF: image mean flux (Pegram and Clothier, 2001).
Unconditional mean precipitation over the radar com-
posite domain (including zeros). Note that this variable
is correlated with WAR.

– MM: marginal mean precipitation. Conditional mean
precipitation (only wet pixels). Also referred to as con-
ditional IMF. It can be computed in rain rate (mm h−1)
or in linear reflectivity units Z.

– β1 and β2: slopes of the spatial 1D RAPS. Two values
are needed since spectra often show a scale break (e.g.
Gires et al., 2011; Seed et al., 2013).

– e: anisotropy of the precipitation field, as measured by
the eccentricity of the spatial autocorrelation function.
The latter is derived as e =

√
1− am/aM, where am and

aM are the minor and major axes of the fitted ellipse
(derived by eigenvalue decomposition of the spatial co-
variance matrix).

– Decorrelation time of precipitation fields, defined as the
time when the temporal correlation falls below the value
1/e ≈ 0.37. The temporal correlation is derived by cor-
relating precipitation fields at increasing time lags (e.g.
Germann et al., 2006b).

Figure 3 shows an example of a composite radar rainfall
field at 17:00 UTC on 17 April 2016 in Switzerland, with the
corresponding 2D power spectrum, 1D RAPS and 2D auto-
correlation function (computed by inverse fast Fourier trans-
form (FFT) of the 2D spectrum; see Appendix A). The RAPS
exhibits the typical power law scaling behaviour of precipita-
tion fields. The scaling break occurs around the 20 km wave-
length, in agreement with other studies (Seed, 2003; Seed
et al., 2013).

3.2 Phase space trajectories

Figure 4 represents the density of points (trajectories) of a
4D US precipitation attractor that was constructed using the
following phase space variables: decorrelation time, eccen-
tricity, area coverage and marginal mean. These variables
were selected to be independent of each other, although we
can still notice some interesting dependencies between vari-
ables, for example the increase in decorrelation time with
increasing rainfall area (top left) and increasing eccentric-
ity (top centre). This may indicate that precipitation fields
that are less widespread and more isotropic, for example iso-
lated convective cells, are less predictable (according to the
decorrelation time), while more organized frontal precipi-
tation with large-scale anisotropy is more predictable. The
density plot of decorrelation time vs. marginal mean also
has a peculiar shape. The decorrelation time increases un-
til MM≈ 23 dBZ but then starts decreasing. This could be
attributed again to the lower predictability of isolated intense

convective cells compared to stratiform precipitation. More-
over, the larger variance of convective precipitation reduces
the decorrelation time.

Figure 5 visualizes a Swiss 4D precipitation attractor em-
bedded in the phase space composed of WAR, MM, β1 and
β2. These variables are different from the ones used in the
US because in Switzerland we were developing a nowcasting
system depending on those four variables, while in Canada
we were doing a more general-purpose study. The attractor
is constructed using all the rainfall fields from 2005 to 2010
that have a WAR ≥ 5 % and where the fitting of the spectral
slopes is of good quality, i.e. when the correlation coefficient
of the linear regression is above 0.95 (for both β1 and β2).
These criteria are met by 209715 rainfall fields (33 % of the
total number of images). The figure panels are organized in a
4× 4 matrix, where each row (column) represents one phase
space variable.

The four plots on the diagonal show the univariate his-
tograms of the four variables and the corresponding summary
statistics (mean and standard deviation).

The subplots in the upper triangular part of the matrix
show the 2D histograms describing the density of points for
all combinations of phase space variables (same as Fig. 4).
In the upper right part of each subplot, there is the correla-
tion coefficient between the two variables. Interesting corre-
lations can be noticed between WAR vs. β1 and MM vs. β2.
The first reveals that increasing the rainfall fraction over the
radar domain increases the power at large spatial scales. The
second highlights the convective cases (high MM), which in-
crease the power at wavelengths of ≈ 10–20 km and thus the
value of β2. In the context of spatial scaling analysis, the den-
sity plot of β1 vs. β2 is quite interesting as it summarizes the
average scaling behaviour of Alpine radar rainfall fields over
many years, i.e. 1.8< β1 < 2.4 and 3.3< β2 < 3.8. Such
findings are relevant in the context of stochastic rainfall sim-
ulation since β determines the type of approach needed,
which depends on whether β is below or above the dimen-
sion of the field (β > 2): see e.g. Menabde (1998).

The subplots in the lower triangular part of the matrix are a
simplified representation of surfaces of section (e.g. Sideris,
2006), also known as Poincaré maps (e.g. Lichtenberg and
Lieberman, 1992). In practice, they represent a cross section
through the attractor. They are obtained by plotting only the
points whose values fall in an interval around the 50th per-
centile of a given variable. For example, the subplot in row
2 and column 1 in Fig. 5 only shows the points in the inter-
val 2.13–2.16 for β1. The x axis and y axis are the variables
WAR and MM, respectively. Finally, the points are coloured
according to the remaining fourth variable (β2). This type of
representation helps analyse the dependencies between vari-
ables in the 4D space, e.g. the clear increase in β2 when in-
creasing MM (row 3, column 2) or the increase in β2 with
decreasing β1 (row 3, column 1), which was not visible from
the density plot (row 3, column 4).
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Figure 3. Fourier analysis of the radar rainfall field at 17:00 UTC on 16 April 2016 in Switzerland. (a) Radar rainfall field overlaid on the
digital elevation model (DEM). (b) Two-dimensional Fourier power spectrum rotated by 90° (zoom for wavelengths larger than 13 km).
(c) Spatial autocorrelation function. (d) Radially averaged 1D power spectrum in a log–log plot, together with the estimated spectral slopes
β1, β2, WAR, IMF and MM statistics. See other examples in Nerini et al. (2017).

These graphical illustrations represent a first useful insight
into the attractor. For example, it is possible to distinguish
between the stratiform and convective precipitation systems
using combinations of phase space variables, in particular the
eccentricity, spectral slopes and decorrelation time.

3.3 Scaling properties

The domain-scale precipitation attractor provides additional
insight into the origin of the spatial scaling break in the
Fourier power spectrum. The scaling break was already no-
ticed by previous studies, e.g. Gires et al. (2011) and Seed
et al. (2013). The results of the latter provide hints that the

scaling break is related to the presence of convective precip-
itation.

Figure 6 shows the relationship between the magnitude of
the scaling break, defined as β2−β1, with the rainfall fraction
(WAR). Figure 6a shows that the scaling break magnitude
tends to decrease for increasing WAR values. This depen-
dence is enhanced further when normalizing the WAR by the
MM, which leads to a correlation of almost −0.5 (Fig. 6b).
The variable WAR−MM(dB) is an effective way of describ-
ing whether the precipitation field is more of a stratiform or
convective type. The scaling break is more pronounced when
intense precipitation is concentrated in a few areas (small
WAR and high MM). In contrast, widespread low-intensity

https://doi.org/10.5194/npg-31-259-2024 Nonlin. Processes Geophys., 31, 259–286, 2024
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Figure 4. US precipitation attractor. It is represented by 2D histograms (counts) using as phase space variables the marginal mean precipi-
tation (MM), area coverage, decorrelation time, and eccentricity of composite radar precipitation fields. For illustrative purposes, panel (a)
includes a dummy trajectory representing a sequence of radar fields within the attractor.

precipitation (high WAR and low MM) reduces the magni-
tude of the scaling break.

This brief analysis sheds new light on the origin of the
scaling break in power spectra of precipitation fields, which
is helpful for designing stochastic models (e.g. Seed et al.,
2013). For instance, one single spectral slope would be suf-
ficient to simulate stratiform precipitation fields, while two
spectral slopes are necessary to simulate convective precip-
itation fields. This also means that convective precipitation
fields exhibit a weaker scaling behaviour than large-scale
stratiform precipitation systems. It is not surprising then that
nowcasting of thunderstorms is done by cell-tracking tech-
niques rather than scaling approaches.

3.4 Fractal properties

To estimate the fractal dimension of the attractor, we applied
the time-delay embedding technique and correlation dimen-
sion method to each time series of phase space variables.

Figure 7 shows the estimated fractal dimension of the US
precipitation attractor for the fractional area coverage and the
marginal mean time series. For an embedding space of D =
30 variables, the correlation dimensions stabilize to f = 9.85
for the fractional area and f = 10.89 for the marginal mean.
However, due to known limitations of the Grassberger–
Procaccia algorithm, we cannot claim that such finite corre-
lation dimensions are evidence of a low-dimensional chaotic
system (see the references in Appendix D).

Instead of re-doing the same analysis with the Swiss at-
tractor, in Sect. 4.6 we will exploit the PCA framework to
estimate scale-dependent fractal dimensions, which can be
compared in relative terms rather than interpreted in absolute
terms.

3.5 Growth of errors

Once the phase space is defined, we can study the intrinsic
predictability of states starting from close initial conditions,
the so-called analogues. We retrieved the analogues by di-
viding each variable of the attractor into 10 intervals (from
minimum to maximum values). More precisely, a 1D attrac-
tor has 10 intervals, a 2D attractor 100 squares, a 3D attrac-
tor 1000 cubes, a 4D attractor 10 000 hypercubes, and so on.
The points that fall within the same hypercube are consid-
ered analogues. Cubes with less than 20 analogues were dis-
carded.

Figure 8 shows the average growth of the standard de-
viation of retrieved analogues (spread) on the US attractor.
The analyses are done by incrementally adding phase space
variables starting from the rainfall area. The error growth
(spread) is characterized by the following stages:

1. ≈ 0–1 h: initial slow exponential growth (nowcasting
range);

2. ≈ 1–6 h: fast power law growth (from nowcasting to
short range);
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Figure 5. Swiss 4D precipitation attractor. The phase space variables are the marginal mean precipitation, the wet area ratio, and the two
spectral slopes of the RAPS (β1, β2). MM and WAR are shown on the log scale to account for the asymmetry of the distribution.

3. ≈ 6 h–20 d: slow growth again (from short range to
medium range); and

4. >≈ 20 d: saturation stage (loss of predictability).

The reason for the slow error growth at 0–1 h is mostly
unknown. It might be related to some radar data process-
ing steps, in particular those that introduce smoothness in
the precipitation field, which leads to overestimation of the
predictability at the smallest scales. The rapid error growth
at 1–6 h is attributed to the low predictability of precipita-
tion growth and decay, especially in convective systems. The
slower error growth at 6 h–20 d can be explained by the more
predictable translation of synoptic-scale features across the
continental US.

Note that saturation already occurs after ≈ 6 h when us-
ing the variable area alone. Adding phase space variables
improves predictability in three ways: (1) by reducing the
rate of error growth in the first 2–3 h, (2) by reducing the
spread in the range ≈ 6 h–20 d, and (3) by extending the sat-
uration stage by several days. However, the 4D attractor has
a larger initial error (≈ 0.2), which reflects the difficulty in
finding states that are similar in all variables simultaneously.
Despite the initial disadvantage, the 4D attractor shows better
medium- and long-range predictability.

These promising results show that there is unexpected in-
trinsic predictability of precipitation if the appropriate phase
space variables are chosen. Given the substantial improve-
ment of predictability in the range ≈ 6 h–20 d, it would also
be interesting to study whether analogues can help extend the
range of NWP models (e.g. by blending probabilities).

Another interesting experiment is to analyse the local vari-
ability of predictability within the attractor. This could in-
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Figure 6. Analysis of scaling break magnitude (β2−β1) w.r.t.
the (normalized) rainfall fraction. Two-dimensional histogram of
(a) β2−β1 vs. WAR (%, log scale) and (b) β2−β1 vs. WAR-MM
(dB). If β2−β1 = 0, there is no scaling break.

form about the dependence of intrinsic predictability on ini-
tial location within the attractor (e.g. Li and Ding, 2011).

In order to simplify the task, here we only consider 1D tra-
jectories, i.e. time series of individual phase space variables,
hereafter extracted from the Swiss attractor. The small in-
terval defining the initial conditions is selected by regularly
spaced values between the 20th and 90th quantiles of each
phase space variable. At each quantile, we select all the ana-
logues that are within a small neighbourhood and that are at
least 1 h from each other (to reduce dependence among ana-
logues).

Figure 9 shows the growth of spread of an ensemble of
analogue time series starting under close initial conditions.
The reported lifetime characterizes the lead time after which
the spread reaches saturation. It is estimated by fitting a non-
parametric kernel ridge regression to the data points and by
taking the value at which the first derivative approaches zero.
Such estimations are only approximate as they depend on the
convergence criterion chosen.

Depending on the phase space variable and the initial con-
ditions, we obtain different lifetime estimations, which re-
flects the predictability dependence on the initial conditions.
The saturation times vary between 10 h and more than 90 h,
which are shorter than those obtained in the US (Fig. 8). The
shorter predictability over the Alpine region is mainly at-
tributed to the smaller domain size (64 times smaller than the
US), where it is not possible to observe the full precipitation
extent and lifecycle of extra-tropical cyclones. By comparing
Figs. 8 and 9, we notice that the regions of fast error growth
in the range 1–6 h correspond quite well, although the Swiss
attractor shows a less clear breaking point at around 6 h com-
pared to the US.

Most curves in the Swiss attractor miss the initial slow er-
ror growth observed in the US attractor (Fig. 8). They also
start from quite different initial values, depending on the
variable chosen. For example, β2 has rather high initial er-
rors, which indicates that it has a larger intrinsic variabil-
ity (noise). Despite the larger initial error, β2 seems to take
longer than β1 to saturate (from several hours to days, de-
pending on the chosen saturation thresholds). Despite flat-
tening considerably after 5–6 h, the MM does not reach satu-
ration completely.

These findings provide some useful information on the
predictability that could be obtained by extrapolation now-
casts. In fact, the smaller size of the Swiss domain (as com-
pared with the US) imposes a shorter limit of predictability,
which could only be extended by enlarging the domain or by
forecasting the evolution of domain-scale statistics.

Appendix E shows various experiments to analyse the sen-
sitivity of predictability estimations to the scaling of the time
and error axes as well as the use of different spread metrics.

4 Precipitation attractors based on principal
component analysis

4.1 Extracting phase space variables

Domain-scale statistics are unable to describe the spatial dis-
tribution of precipitation, unless they are computed locally
(e.g. Sideris et al., 2020). A possible solution is to use PCA.
PCA is a method of compressing the information contained
in a dataset of correlated variables, which has been exten-
sively used in atmospheric and climate science (e.g. Lorenz,
1956; Richman, 1986; Jolliffe, 2002; Schiemann et al., 2010;
Foresti et al., 2015; Nerini et al., 2019). The procedure con-
sists of finding an orthogonal transformation that linearly
combines the variables to form a set of uncorrelated variables
sorted by explained variance, which are called principal com-
ponents.

The variables of the precipitation data matrix (Eq. 1) are
strongly correlated since each column represents a time se-
ries of precipitation for 1 pixel of the radar image. The so-
called S-mode PCA exploits the spatial dependence to com-
press the information contained in the radar archive into a
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Figure 7. Correlation dimension estimation using the Grassberger–Procaccia algorithm and time-delay embedding on the variables fractional
area coverage and marginal mean on the US attractor. log(r) is the logarithm of the radius containing the points, while log(Cr) is the
corresponding (normalized) correlation integral, i.e. the average number of points found within that radius.

Figure 8. Average standard deviation of analogues in the US at-
tractor as a function of lead time for phase spaces of increasing
dimensionality. The x axis is logarithmic, while the y axis is linear
to highlight the longer-range predictability. The spread is computed
according to Eq. (2).

small set of principal components, which are used here as
phase space variables. The lower-dimensional phase space is
obtained by projecting the data matrix as follows:

YN,D = XN,MUM,D, (5)

where UM,D is the truncated matrix of eigenvectors (projec-
tion matrix), XN,M is the original data matrix (Eq. 1), and
YN,D is the (truncated) matrix of principal component scores
(projected matrix), which contains the coordinates of radar
images in the phase space. For more details on the PCA im-
plementation, we refer to Appendix B.

Due to the too large size of the US dataset, the radar fields
were upscaled to a resolution of 64× 64 km2 pixels using
a Haar wavelet transform before applying PCA. This pre-
processing step only marginally affects the search for ana-
logues as we are interested in similarity at synoptic scales.
We did not attempt to upscale the Swiss radar domain to the
resolution of 64× 64 km2 pixels as this would have given an
8× 8 radar image, too small to provide a meaningful com-
parison to the US dataset.

4.2 Plotting phase space variables

Figure 10 shows the fields of eigenvectors computed from
the US radar archive (1996–2016). The first eigenvector (ε 0)
explains only 4.8 % of the total variance and is characterized
by positive values in the middle of the domain. It was found
that the first principal component (PC), associated with the
first eigenvector, is strongly correlated with the field IMF
(e.g. Foresti et al., 2015). Radar images with precipitation lo-
cated in this region will also have correspondingly high PC0
scores. All other eigenvectors can be interpreted in a similar
way. For instance, the second (ε 1) and third (ε 2) eigenvec-
tors discriminate precipitation patterns in the west–east and
north–south directions, respectively. Therefore, a precipita-
tion system moving from west to east will show an increase
in PC0 followed by an increase in PC1. Finally, eigenvectors
exhibit a characteristic sorting by spatial scale.

Figure 11 shows the eigenvectors of the Swiss radar
dataset (2005–2010), which also shows the characteristic
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Figure 9. Error growth of an ensemble of analogues starting from different initial conditions on the Swiss attractor. The upper end of the
x axis corresponds to a lead time of 96 h (4 d). The number of analogues N is shown in the figure legends. The x axis is logarithmic, while
the y axis is linear to highlight the longer-range predictability. The spread is computed according to Eq. (2).

sorting by the spatial scale. The domain is much smaller
compared with the US, but similar patterns can be observed,
for example the tendency of the first eigenvector to have high
values in the middle of the domain and the dipole shape of
the second and third eigenvectors oriented in the north–south
and east–west directions.

These shapes not only highlight the most common pre-
cipitation regimes but are also influenced by the rectangu-
lar shape of the domain and the orthogonality constraints of
PCA. These dipole effects are known in the literature as Buell
patterns and can complicate the meteorological interpreta-
tion of principal components (e.g. Richman, 1986).

In an attempt to improve their interpretation, we imple-
mented a varimax rotation of the principal components (e.g.

Richman, 1986), which were truncated at different thresholds
of the cumulative explained variance (before rotation). The
rotated eigenvectors highlighted some parts of the domain
(with values close to zero elsewhere) and lost the sorting by
the spatial scale. As we did not find these results informative,
they were not included in the paper.

Figure 11 also shows a few eigenvector fields for higher
PC numbers (50, 100, 500 and 1000). After 500 components
the eigenvectors become more noisy and describe very small-
scale precipitation features. Note that even after 500 eigen-
vectors there is still almost 15 % unexplained variance.

PCA explains more variance with fewer components in
the Swiss dataset. For instance, with 20 components the cu-
mulative explained variances are 47.1 % and 35.5 % for the
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Figure 10. Eigenvectors (loadings) extracted by PCA from the US radar archive.

Figure 11. Eigenvectors (loadings) extracted by PCA from the Swiss radar archive.
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Swiss and US domains, respectively. This can be attributed
to the smaller Swiss dataset but also to the more frequent
orographic precipitation events related to the presence of the
Alps, which determines more predictable spatial patterns on
the upwind and downwind sides of the Alpine chain.

A common pattern for both Swiss and US attractors is that
PCA decomposes the dataset into a set of eigenvectors that
represent decreasing spatial scales, similarly to what is ob-
tained with a Fourier-based cascade decomposition of pre-
cipitation fields (Seed, 2003; Seed et al., 2013). This phe-
nomenon is detailed further in the next section.

4.3 PCA vs. Fourier analysis

The sinusoidal patterns of eigenvector fields are an outcome
of the Toeplitz-like nature of the covariance matrix of spa-
tially correlated fields, whose eigenvectors represent sines
and cosines of increasing frequencies. More precisely, for
a stationary process the sinusoidal basis functions of the
Fourier transform form a valid principal component basis,
where the variance of each component represents the power
spectrum (e.g. Simoncelli and Olshausen, 2001).

PCA derives the basis functions by decomposing an empir-
ical covariance matrix. This may explain why in atmospheric
science the principal components are referred to as empirical
orthogonal functions (EOFs Lorenz, 1956; Richman, 1986).
Instead, Fourier analysis assumes the orthogonal basis to be
composed of sines and cosines, which is imposed prior to
the analysis. Such assumptions simplify the use of Fourier
analysis, which can also be applied to a single radar image.
Instead, PCA needs an archive of radar images to derive the
orthogonal basis. We find here again the inductive vs. deduc-
tive dichotomy as in the definition of the phase space vari-
ables.

The similarity between PCA and Fourier decomposition
creates interesting links to the cascade decomposition used in
the Short-Term Ensemble Prediction System (STEPS Seed,
2003; Bowler et al., 2006). In STEPS, the FFT is used to
decompose and simulate precipitation fields within a mul-
tiplicative cascade framework, where each level represents
precipitation features at different spatial scales.

Inspired by the relation to the cascade decomposition, Ner-
ini et al. (2019) used PCA to blend radar ensemble now-
casts with NWP ensembles in a reduced space. An interest-
ing future development arising from these findings could be
to stochastically simulate precipitation fields in the space of
principal components, for example by extending the method
of Link et al. (2019).

4.4 Phase space trajectories

Figure 12 shows the trajectories of US radar composite im-
ages in the space of the first PCs. For this experiment, PCA
was only applied to 23 manually selected similar events to
better understand its inner workings. The selection included

well-organized precipitation systems moving across the con-
tinental US from west to east.

An interesting observation is that PC trajectories define
quasi-regular trajectories, which result from the translation
of precipitation systems from west to east. The most regular
and illustrative PC shapes are found in the three sub-panels
located as follows (row, column): (1,2), (1,3) and (2,2). The
one at (1,2) has a faint resemblance to the Lorenz attractor,
which is only a fortunate coincidence.

This behaviour is not surprising: as explained in Sect. 4.2,
the second (west–east) and third (north–south) principal
components describe the general location of the precipita-
tion system within the domain. The faster the precipitation
system moves e.g. from west to east, the faster the trajectory
is along the second principal component.

4.5 Scaling properties

The sorting of eigenvectors by spatial scale observed in
Sect. 4.2 is corroborated by plotting the explained and cumu-
lative variance vs. the ordinal principal component number
in log–log scale, as shown in Fig. 13. Indeed, the explained
variance draws a clear straight line (power law), similar to
those obtained from Fourier-based scaling analyses (see e.g.
Fig. 3).

The slow increase in cumulative explained variance does
not allow us to define a clear cutoff level to truncate the prin-
cipal components. These results do not leave a lot of opti-
mism concerning the definition of a low-dimensional attrac-
tor for precipitation based on PCA. Instead, they point to-
wards a stochastic approach for precipitation analysis and
simulation.

One way of establishing an empirical relation to Fourier-
based scaling analysis is to convert the ordinal PC numbers
of Fig. 13 into the corresponding spatial scales γ , which are
represented by spatial wavelengths λ= 1/k = 2γ . For this
task, we developed the following methodology (see Fig. 14).

1. Compute the 2D Fourier spectra of the eigenvector
fields (e.g. of Fig. 11).

2. Derive the 1D RAPS from the 2D spectra.

3. Estimate the most representative wavelength λ from
each 1D spectrum. We tested two methods:

a. the maximum power method, which returns the
wavelength with maximum power; and

b. the weighted average method, which computes an
average of wavelengths weighted by power.

4. Plot the obtained wavelength against PC number in log–
log scale (Fig. 14a).

5. Replace the PC number with the corresponding wave-
length and plot it against the explained variance from
Fig. 13 (Fig. 14b).
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Figure 12. Trajectories of similar radar image sequences over the US in the space of standardized principal components. The dates of the 23
similar precipitation events are displayed on the right.

Figure 13. Explained variance and cumulative explained variance
vs. the principal component number from the Swiss PCA.

Figure 14 demonstrates the existence of a power law re-
lationship between the wavelength and both the PC number
and explained variance. The results obtained with the maxi-
mum power and weighted average methods are quite similar,

despite some deviations above the 300 km wavelength (due
to wavelengths larger than the domain size).

These findings point out that there is no universal relation-
ship that maps the ordinal PC number to the spatial scale, as
the latter depends on the covariance matrix of a given dataset.
However, the method proposed above offers a simple and ef-
fective way of revealing the spatial scale represented by a
given eigenvector.

4.6 Fractal properties

Figure 15 shows an experiment to separate the predictable
and unpredictable precipitation scales using the Swiss attrac-
tor. The assumption is that the time series of PCs representing
large-scale features converge to a lower correlation dimen-
sion than the ones representing the more “stochastic” small
scales. Note that a similar experiment was also done by Al-
berti et al. (2023) using multivariate empirical-mode decom-
position on the Lorenz system.

Figure 15a shows the temporal autocorrelation functions
(ACFs) of a selection of principal component time series.
Rather than computing a single ACF for the whole time se-
ries (6 years of PC values), we computed it for each precip-
itation event (separated by a sufficiently long period without
precipitation). This step was needed because the (long) peri-
ods without precipitation were artificially increasing the tem-
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Figure 14. Derivation of spatial wavelength from PC number. (a) Wavelength vs. PC number. (b) Explained variance vs. wavelength (spatial
frequency), which can be interpreted as a Fourier power spectrum.

poral autocorrelation. As expected, there is a decrease in the
decorrelation time for increasing PCs. The very high corre-
lations in the first hour, especially visible for PC1, could be
related to the slow error growth in the 0–1 h range already ob-
served in the US attractor (see Fig. 8). However, they might
also be explained by artifacts introduced by PCA, which ar-
tificially increase the smoothness of time series.

The first minimum of the ACF was used as time delay τ by
the time-delay embedding method to estimate the associated
correlation dimension of each PC time series (see Fig. 15b).
The results show that all the time series converge towards
a finite correlation dimension, which grows from 2 to 4–5
when going from the 1st to 100th PCs. Only the last PC does
not converge. These results highlight the expected underes-
timation of the correlation dimension of the Grassberger–
Procaccia method (Schertzer et al., 2001).

A major difficulty that we encountered in applying time-
delay embedding is related to the short duration of precipi-
tation events compared with the time delay τ . In fact, if we
consider a normal precipitation event lasting 24 h (over the
Swiss domain) and τ = 4 h, the maximum dimensionality of
the embedding space is D = 24

4 = 6. Adding more variables
will only include radar images with no precipitation in the
time series and form a fixed point in the attractor, which ad-
versely affects the estimation of the fractal dimension. This
constraint is clearly visible in Fig. 15c, which shows the
number of samples available to compute the correlation di-
mension as a function of the embedding dimension and PC
number. One way to reduce this effect is by choosing larger
domains to increase the probability of there being precipita-
tion somewhere.

Finally, even though the fractal dimension estimates in
this paper cannot be interpreted in absolute terms, they can
be interpreted in relative terms. That is, lower PCs exhibit
stronger chaotic behaviour than larger PCs, which have a
more stochastic behaviour.

4.7 Growth of errors

Figure 16 shows the forecast accuracy obtained by analogues
for different PCA configurations and normalization of data.
Each PCA configuration comprises a combination of Wavx ,
PCAx and rotation parameters.

– Wav1: before PCA, subtract the mean from data
columns.

– Wav2: before PCA, subtract the mean and divide the
data columns by standard deviation.

– PCA1: after PCA, use raw PC scores.

– PCA2: after PCA, subtract the mean and divide the PC
scores by their standard deviation.

– PCA3: after PCA, weight each PC score by the ex-
plained variance.

– Rotation (varimax): yes/no.

– Random: random selection of analogues.

The forecast quality of analogues was measured by three
continuous verification scores, i.e. mean absolute deviation
(MAD), root-mean-square error (RMSE), Pearson’s correla-
tion, one categorical score (critical success index, CSI) and
two probabilistic scores, i.e. the area under the ROC curve
and the Brier score at the 1 dBZ threshold. The verification
was done using 50 precipitation events in the US. For each
of the 50 events, 25 analogues were selected based on the
smallest Euclidean distance in PC space and forcing them to
be at least 16 h from each other (for temporal independence).
A 90 % threshold of the cumulative explained variance was
used to define the dimensionality of the phase space.

According to MAD, RMSE and correlation, the best con-
figuration is Wav1, Rotation (yes) and PCA2. Instead, ac-
cording to CSI, ROC and Brier score, the best configurations
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Figure 15. Correlation dimension analysis of principal component time series on the Swiss attractor. (a) Temporal autocorrelation functions
of the PC time series for different precipitation events (blue) and the average ACF (red). (b) Correlation dimension vs. embedding dimension
for different PCs. (c) Number of samples available for the estimation.

are Wav2, Rotation (no) and PCA3 but also Wav1, Rotation
(no) and PCA3. In summary, it seems that rotating eigenvec-
tors degrades the categorical scores but improves the contin-
uous scores, i.e. the ability to predict more intense precipita-
tion. Weighting the PCs by the explained variance improves
the categorical scores at the 1 dBZ threshold, i.e. the ability
to separate wet and dry areas. It is not yet clear how these
conclusions generalize to different climatic regions.

This analysis highlights that, once the attractor is defined,
it is not that simple to retrieve analogue states. That is, prac-
tical implementation choices have an impact on the pre-
dictability estimations. Note that the low skill already at the
start of the forecast (correlation ≈ 0.3–0.6 and CSI ≈ 0.15–
0.25) is likely the result of verifying the forecast at the pixel
resolution, while the retrieved analogues are only similar at
large scales (see Sect. 2.2). Neighbourhood verification with
the fraction skill score would give higher scores (Roberts and
Lean, 2008).

Similar to Foresti et al. (2015), we also searched analogues
by minimizing the Euclidean distance of the last two (instead

of one) points in the PC space. Results were not surprising:
the skill at the short lead times degraded and the one at the
longer lead times improved, but only slightly.

5 Conclusions

This paper explored a framework to construct empirical low-
dimensional precipitation attractors from multi-year archives
of composite radar precipitation fields. The attractors were
used to learn about the intrinsic predictability and various
properties of precipitation fields. Data covering the Swiss
Alps (2005–2010, 512× 512 km2 domain) and the continen-
tal US (1996–2016, 4096× 4096 km2 domain) were used.

We tested two approaches to defining the attractor. The
first approach uses as phase space variables selected domain-
scale statistics of precipitation fields that are relevant for
nowcasting applications, for example the precipitation frac-
tion, mean precipitation and slopes of the Fourier power
spectrum, which characterize the spatial autocorrelation. The
second approach derives the phase space in a more objective
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Figure 16. Testing different PCA settings for retrieving analogues in the US. The dashed lines show the 25th and 75th percentile values of
the score distribution.

way by principal component analysis, which also considers
the location of precipitation.

After defining the phase space variables, we studied the
fractal properties and error growth from analogues within
both attractors. The pros and cons of the two types of attrac-
tors are summarized in Table 2. The main conclusions are the
following.

– We could not find a unique objective way of defining
the phase space of the attractor. That is, one is free to
construct the attractor depending on the objective of the
study or specific application.

– Graphical representation of the attractor as the density
of points in various combinations of phase space vari-
ables provides useful insight into data dependencies and
precipitation regimes (e.g. stratiform vs. convective).

– The magnitude of the scaling break in radially averaged
power spectra of radar precipitation fields, previously
observed by Gires et al. (2011) and Seed et al. (2013),
is much more pronounced with isolated convective pre-
cipitation than stratiform precipitation.

– Error growth from analogues retrieved by using
domain-scale statistics starts slowly (0–1 h, reason
mostly unknown), continues quickly (1–6 h, unpre-
dictable convective precipitation growth and decay),
and slows down again before predictability is lost to
a large extent (6 h–20 d, more predictable synoptic
scales).

– The rate of error growth depends on the phase space
used and the initial location within the attractor.

– If the appropriate phase space variables are chosen,
there is unexpectedly long intrinsic predictability of pre-
cipitation (several days), as shown with the US dataset.

– Predictability of domain-scale statistics is longer in the
US than CH, which is attributed mostly to the larger
domain but also to the longer dataset.

– By considering the spatial distribution of precipitation,
PCA represents a useful framework for analysis, com-
bination and simulation of precipitation fields.

– Fourier analysis can be used to derive the spatial scales
corresponding to eigenvector fields extracted by PCA.

– The explained variance by PCA scales with both the or-
dinal PC number and corresponding spatial scale, which
has a clear connection to Fourier-based decomposition
of precipitation fields (e.g. Seed, 2003; Bowler et al.,
2006).

– Fractal analysis of the principal component time series
reveals that low PCs have a stronger chaotic contribu-
tion than high PCs, which have a stronger stochastic
component.

The application of tools used in chaos theory, such as time-
delay embedding and the correlation dimension method, is
complicated by the precipitation intermittency, finite event
duration, non-Gaussian distribution and multifractal prop-
erties. These difficulties are also reflected in the analysis
of derived phase space variables (MM, WAR, PCs, etc.).
In addition, the validity of theorems and assumptions from
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Table 2. Advantages and disadvantages of the two types of attractors.

Deductive attractor: domain-scale statistics Inductive attractor: principal components

Phase space WAR, IMF, MM, β1, β2, etc. PC1, PC2, · · ·, PCD

Pros – Phase space variables are interpretable.
– Phase space variables can easily be integrated into existing
stochastic nowcasting systems.

– Phase space is extracted in an objective way.
– Phase space considers the location of precipitation.
– The decomposition accounts for scaling of variance and
allows truncation of the phase space at the desired level.
– Some domain-scale statistics are implicitly included.

Cons – Analogues are only similar at the domain scale.
– The choice of phase space variables is subjective and de-
pends on the application.

– Analogues are only similar at large scales.
– The PCA configuration and data normalization affect the
quality of the analogues.

chaos theory is pushed beyond their limits because precipita-
tion is the result not only of dynamical processes, but also
of (stochastic) microphysical processes. It is important to
mention that the current study did not have the ambition to
demonstrate that the precipitation attractor is of (finite) low
dimensionality (see the discussion in Appendix D), but only
to gain additional insight by testing different approaches.

Future perspectives comprise both improvements of the
methodology and more practical applications. The method-
ology can be improved for example by exploring other phase
space variables (e.g. orientation of anisotropy and precipi-
tation translation speed), by using faster analogue retrieval
methods (e.g. Franch et al., 2019), or by using more robust
methods for estimating fractal dimensions (e.g. Golay and
Kanevski, 2015; Camastra and Staiano, 2016; Pons et al.,
2023). The size of the dataset could also be extended, al-
though the main conclusions are not expected to change. The
concept of an attractor could also have potential for auto-
matic weather radar data quality control, where the interest-
ing patterns are the outliers that deviate from the attractor.

Concerning possible applications, it is not yet clear how
to exploit the gathered knowledge to improve precipitation
forecasting in practice. For instance, both NWP forecasting
and stochastic nowcasting methods are known to underes-
timate the forecast uncertainty. That is, the ensembles are
under-dispersive. One possibility would be to drive stochas-
tic simulations with the large-scale features given by ana-
logues. Another possibility could be to seamlessly blend
forecast probabilities derived from extrapolation nowcasts,
NWP models and analogues.

Finally, a completely different methodology, which has at-
tracted the attention of the atmospheric science community
for quite some time, relies on the training of machine learn-
ing algorithms to optimally extract the localized predictable
patterns from the data (Foresti et al., 2018, 2019). It could
be insightful to use the methodology presented in this paper
to understand what exactly was learned by machine learning
algorithms in terms of predictability.

Appendix A: Fourier analysis of precipitation fields

The discrete 2D power spectrum is defined as the squared
norm of the complex Fourier transform:

P (kx,ky)=
1
M
|F{Z−Z}(kx,ky)|2, (A1)

where M is the number of image pixels, Z the precipitation
field, Z the mean precipitation of the field, F the fast Fourier
transform operator, and (kx,ky) the wave numbers (corre-
sponding to spatial frequencies). The 2D spectrum informs
about the distribution of variance with spatial frequency and
is a useful tool to analyse and model the spatial structure of
rainfall fields (e.g. Seed, 2003; Nerini et al., 2017).

The spatial autocorrelation function (ACF) is obtained via
the Wiener–Khinchin theorem as the inverse Fourier trans-
form of the power spectrum under the assumption of station-
arity (e.g. Nerini et al., 2017; Jameson et al., 2018):

P ′(x,y)=
1

Var{Z}
F−1
{P (kx,ky)}, (A2)

where Var{Z} is the precipitation field variance. Since the
autocorrelation and the spectrum form a Fourier transform
pair, they both convey the same information, the former in
physical space and the latter in the space of frequencies.

By assuming isotropy, from the 2D power spectrum we
can derive a radially averaged 1D spectrum (RAPS):

P (|k|)=
1
|Z|

|Z|∑
z=1

P (Zz), (A3)

where Z = {(kx,ky)1, . . ., (kx,ky)|Z|} is the set of wave num-

bers for which |k| ≤
√
k2
x + k

2
y < |k| + 1. The same can be

done for the 2D spatial autocorrelation.
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Appendix B: Principal component analysis

Let XN,M be the archive of N radar images with M pixels.
The PCA methodology consists of the following steps.

1. Set the value of pixels outside the radar domain to zero
precipitation.

2. (Optionally) apply a logarithmic transformation to
all precipitation values (use dBR or dBZ units; see
Sect. 3.1).

3. Centre the data matrix XN,M by the column means, i.e.
X̂N,M = XN,M − 1xT.

4. Compute the covariance matrix to estimate the linear
dependence of variables, i.e. CM,M = X̂TN,M X̂N,M .

5. Diagonalize CM,M by eigenvalue decomposition
(EVD), i.e. C= UVUT , where UM,M is the orthogonal
matrix of eigenvectors (each column is one vector) and
VM,M is the diagonal matrix of eigenvalues vi .

6. (Optionally) rotate the eigenvectors to enhance interpre-
tation (e.g. Richman, 1986), e.g. using varimax.

7. Project the original data matrix into the space spanned
by eigenvectors, i.e. YN,M = X̂N,MUM,M .

Eigenvectors are sorted by decreasing amount of explained
variance, which can be truncated such that D�M .

An alternative way of performing PCA is by singular value
decomposition (SVD) of the data matrix (e.g. Jolliffe, 2002).
SVD factorization of the centred data matrix is obtained as

X̂N,M = LN,NSN,MRTM,M , (B1)

where L is the matrix of left singular vectors, R the matrix
of right singular vectors, and S the diagonal matrix of sin-
gular values si . The eigenvalues can be calculated from the
singular values as vi = s2

i .
Since SVD does not require the computation of the covari-

ance matrix, it has larger numerical stability than EVD. How-
ever, SVD is slower than EVD ifN �M . In such a case, one
can perform a reduced SVD to avoid storing the large ma-
trix LN,N . Finally, the projected data matrix is computed as
YN,M = LN,NSN,M = XN,MRM,M .

For the Swiss archive, we used the SVD-based PCA de-
composition available in the Python library sklearn (Pe-
dregosa et al., 2011). For the US archive, we used the classi-
cal covariance-based PCA decomposition written in IDL.

Appendix C: Time-delay embedding

An important concept for studying non-linear dynamical sys-
tems is the time-delay embedding theorem (Takens, 1981).
Takens’ theorem defines the conditions for which the dynam-
ics of a smooth attractor can be reconstructed from a time
series of observations of a single state space variable. Note
that the assumption of smoothness may not apply beyond a
certain data noise level (e.g. Schertzer et al., 2001).

Takens’ theorem is applied by lagging multiple times the
time series of a state space variable:

XN,D = [xt ,xt−τ , · · ·,xt−Dτ ], (C1)

where xt is the original time series, xt−τ is the time series
delayed by τ , and D is the dimensionality of the embedding
space. In this paper, we have chosen τ to be equal to the first
minimum of the temporal autocorrelation function.
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Appendix D: Correlation dimension method

The correlation dimension method, known as the
Grassberger–Procaccia algorithm, estimates the fractal
dimension of an attractor by counting the number of points
that are contained in a D-dimensional sphere of increasing
radius r , i.e. the correlation integral (Grassberger, 1986):

C(r)=
1
N2

∑
∀i

H (r −1r), (D1)

where H is the Heaviside function. The counting is per-
formed for each point of the attractor. A log–log plot of C(r)
vs. r gives an estimation of the fractal dimension:

C(ε)∝ rf , (D2)
log
(
C(ε)

)
∝ c+ f log(r), (D3)

where c is an offset and f is the fractal dimension (see
Fig. D1 for an example using US data). In a 2D embedding
space, randomly distributed points would give f ≈ 2, while
points along a straight line would give f ≈ 1. In this paper,
the terms fractal and correlation dimension are used inter-
changeably as measures of the intrinsic dimensionality of a
dataset.

The Grassberger–Procaccia algorithm is known to under-
estimate the fractal dimension, which was the subject of
controversial discussions questioning claims about the exis-
tence of low-dimensional attractors of atmospheric and hy-
drological processes (see e.g. Grassberger, 1986; Lorenz,
1991; Koutsoyiannis and Pachakis, 1996; Sivakumar et al.,
2001a; Schertzer et al., 2001; Sivakumar et al., 2001b; Kout-
soyiannis, 2006). As a consequence, new techniques are be-
ing developed to overcome its limitations (e.g. Golay and
Kanevski, 2015; Camastra and Staiano, 2016).

Figure D1. Example estimation of the correlation dimension by
finding the maximum slope in a log–log plot of the correlation in-
tegral C(r) vs. the search radius r . This example uses time-delay
embedding on the time series of the radar precipitation area on the
US domain.
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Appendix E: Axis-scaling effect on error growth

Figures E1, E2 and E3 show various combinations of axis
scaling and spread metrics that highlight the sensitivity of
predictability estimations. Comments are in the respective
captions.

Figure E1. Error growth of an ensemble of analogues starting from different initial conditions on the Swiss attractor. The x axis is linear,
while the y axis is logarithmic, which is the standard way of analysing the initial error growth. The spread is computed according to Eq. (2).
Most variables and initial conditions show a rapid growth of errors in the first 30–60 min. However, this initial growth is not linear enough to
claim that error growth is exponential (in a linear time vs. linear error plot).
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Figure E2. Error growth of an ensemble of analogues starting from different initial conditions on the Swiss attractor. Both axes are loga-
rithmic. The spread is computed according to Eq. (2). Compared to Fig. 9, the lifetime estimations are substantially shorter because the first
derivatives of the kernel regression fit converge earlier (see Sect. 3.5).
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Figure E3. Error growth of an ensemble of analogues starting from different initial conditions on the Swiss attractor. Both axes are logarith-
mic. The spread is computed according to Eq. (3). Compared to using the standard deviation (Fig. E2), the robust measure of spread gives
straighter lines in the first 5–10 h, especially for the phase space variables WAR and β1.
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Appendix F: CONUS coverage

Figure F1 shows the full coverage of the radar composite do-
main in the US.

Figure F1. Weather radar coverage in the continental US. Downloaded from https://www.roc.noaa.gov/WSR88D/Maps.aspx on 3 Septem-
ber 2023.
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