Articles | Volume 30, issue 4
https://doi.org/10.5194/npg-30-527-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-30-527-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stieltjes functions and spectral analysis in the physics of sea ice
Kenneth M. Golden
CORRESPONDING AUTHOR
Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, USA
N. Benjamin Murphy
Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, USA
Daniel Hallman
Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, USA
Elena Cherkaev
Department of Mathematics, University of Utah, 155 S 1400 E RM 233, Salt Lake City, UT 84112-0090, USA
Related subject area
Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales
Review article: Scaling, dynamical regimes, and stratification. How long does weather last? How big is a cloud?
Brief communication: Climate science as a social process – history, climatic determinism, Mertonian norms and post-normality
Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO2 fluxes
How many modes are needed to predict climate bifurcations? Lessons from an experiment
Non-linear hydrologic organization
The impact of entrained air on ocean waves
Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
EGUsphere, https://doi.org/10.5194/egusphere-2024-552, https://doi.org/10.5194/egusphere-2024-552, 2024
Short summary
Short summary
The shapes of clouds viewed from space reflect both vertical and horizontal motions in the atmosphere. The turbulence that shapes clouds is similarly described and related theoretically to the measured complexity of cloud perimeters from various satellites and a numerical model. We find agreement between theory and observations, and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale.
Shaun Lovejoy
Nonlin. Processes Geophys., 30, 311–374, https://doi.org/10.5194/npg-30-311-2023, https://doi.org/10.5194/npg-30-311-2023, 2023
Short summary
Short summary
How big is a cloud?and
How long does the weather last?require scaling to answer. We review the advances in scaling that have occurred over the last 4 decades: (a) intermittency (multifractality) and (b) stratified and rotating scaling notions (generalized scale invariance). Although scaling theory and the data are now voluminous, atmospheric phenomena are too often viewed through an outdated scalebound lens, and turbulence remains confined to isotropic theories of little relevance.
Hans von Storch
Nonlin. Processes Geophys., 30, 31–36, https://doi.org/10.5194/npg-30-31-2023, https://doi.org/10.5194/npg-30-31-2023, 2023
Short summary
Short summary
Climate science is, as all sciences, a social process and as such conditioned by the zeitgeist of the time. It has an old history and has attained different political significances. Today, it is the challenge of anthropogenic climate change – and societies want answers about how to deal with it. In earlier times, it was mostly the ideology of climate determinism which led people to construct superiority and eventually colonialism.
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131, https://doi.org/10.5194/npg-29-123-2022, https://doi.org/10.5194/npg-29-123-2022, 2022
Short summary
Short summary
We find a new kind of non-stationarity. This new kind of non-stationarity is caused by the intrinsic randomness. Results show that the new kind of non-stationarity is widespread in small-scale variations of CO2 turbulent fluxes. This finding reminds us that we need to handle the short-term averaged turbulent fluxes carefully, and we also need to re-screen the existing non-stationarity diagnosis methods because they could make a wrong diagnosis due to this new kind of non-stationarity.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Allen Hunt, Boris Faybishenko, and Behzad Ghanbarian
Nonlin. Processes Geophys., 28, 599–614, https://doi.org/10.5194/npg-28-599-2021, https://doi.org/10.5194/npg-28-599-2021, 2021
Short summary
Short summary
The same power law we previously used to quantify growth of tree roots in time describes equally the assemblage of river networks in time. Even the basic length scale of both networks is the same. The one difference is that the basic time scale is ca. 10 times shorter for drainage networks than for tree roots, since the relevant flow rate is 10 times faster. This result overturns the understanding of drainage networks and forms a basis to organize thoughts about surface and subsurface hydrology.
Juan M. Restrepo, Alex Ayet, and Luigi Cavaleri
Nonlin. Processes Geophys., 28, 285–293, https://doi.org/10.5194/npg-28-285-2021, https://doi.org/10.5194/npg-28-285-2021, 2021
Short summary
Short summary
A homogenization of Navier–Stokes to wave scales allows us to determine that air bubbles suspended near the ocean surface modify the momentum equation, specifically enhancing the vorticity in the flow. A model was derived that relates the rain rate to the production of air bubbles near the ocean surface. At wave scales, the air bubbles enhance the wave dissipation for small gravity or capillary waves.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 27, 133–145, https://doi.org/10.5194/npg-27-133-2020, https://doi.org/10.5194/npg-27-133-2020, 2020
Short summary
Short summary
This paper aims to analyse and simulate correlations between two fields in a scale-invariant framework. It starts by theoretically assessing and numerically confirming the behaviour of renormalized multiplicative power law combinations of two fields with known scale-invariant properties. Then a new indicator of correlation is suggested and tested on rainfall data to study the correlation between the common rain rate and drop size distribution features.
Cited articles
Anderson, P.: Absence of diffusion in certain random lattices, Phys. Rev., 109, 1492–1505, 1958. a
Backstrom, L. G. E. and Eicken, H.: Capacitance probe measurements of brine volume and bulk salinity in first-year sea ice, Cold Reg. Sci. Technol., 46, 167–180, https://doi.org/10.1016/j.coldregions.2006.08.018, 2006. a
Baker, G. A.: Quantitative Theory of Critical Phenomena, Academic Press, New York, https://doi.org/10.1016/B978-0-12-075120-4.X5001-5, 1990. a
Banwell, A., Burton, J., Cenedese, C., Golden, K. M., and Åström, J.: Physics of the cryosphere, Nature Rev. Phys., 5, 446–449, 2023. a
Bates, H. F. and Shapiro, L. H.: Long-period gravity waves in ice-covered sea, J. Geophys. Res., 85, 1095, https://doi.org/10.1029/jc085ic02p01095, 1980. a
Bensoussan, A., Lions, J. L., and Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, the Netherlands, ISBN 9780080875262, 1978. a
Bergman, D. J.: Eigenstates of Maxwell's equations in multiconstituent microstructures, Phys. Rev. A, 105, 062213, https://doi.org/10.1103/PhysRevA.105.062213, 2022. a
Bergman, D. J., Chen, P. Y., and Farhi, A.: Scattering electromagnetic eigenstates of a two-constituent composite and their exploitation for calculating a physical field, Phys. Rev. A, 102, 063508, https://doi.org/10.1103/PhysRevA.102.063508, 2020. a
Beychok, M. R.: Fundamentals of Stack Gas Dispersion, self-published, 193 pp., ISBN 0964458802, 9780964458802, 1994. a
Bhattacharya, R.: Multiscale diffusion processes with periodic coefficients and an application to solute transport in porous media, Ann. Appl. Probab., 9, 951–1020, 1999. a
Bi, C., Ou, M.-J. Y., and Zhang, S.: Integral representation of hydraulic permeability, P. Royal Soc. Edinburgh A, 153, 907–936, https://doi.org/10.1017/prm.2022.25, 2023. a
Bohigas, O. and Giannoni, M. J.: Chaotic motion and random matrix theories, in: Mathematical and computational methods in nuclear physics (Granada, 1983), vol. 209 of Lecture Notes in Physics, Springer, Berlin, 1–99, https://doi.org/10.1007/3-540-13392-5_1, 1984. a, b, c
Bonifasi-Lista, C., Cherkaev, E., and Yeni, Y. N.: Analytical approach to recovering bone porosity from effective complex shear modulus, J. Biomech. Eng., 131, 121003, https://doi.org/10.1115/1.4000082, 2009. a, b, c, d
Bunde, A. and Havlin, S. (Eds.): Fractals and Disordered Systems, Springer-Verlag, New York, https://doi.org/10.1007/978-3-642-51435-7, 1991. a, b
Chayes, J. T. and Chayes, L.: Bulk transport properties and exponent inequalities for random resistor and flow networks, Comm. Math. Phys., 105, 133–152, 1986. a
Cherkaev, E.: Spectral coupling of effective properties of a random mixture, in: IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, edited by: Movchan, A. B., vol. 113 of Solid Mechanics and Its Applications, Springer Netherlands, 331–340, https://doi.org/10.1007/1-4020-2604-8_32, 2004. a, b
Cherkaev, E.: Internal resonances and relaxation memory kernels in composites, Philos. T. Roy. Soc. A, 378, 20190106, https://doi.org/10.1098/rsta.2019.0106, 2020. a, b, c
Cherkaev, E. and Ou, M.-J.: Dehomogenization: reconstruction of moments of the spectral measure of the composite, Inverse Problems, 24, 065008, https://doi.org/10.1088/0266-5611/24/6/065008, 2008. a, b, c, d
Christensen, K. and Moloney, N. R.: Complexity and Criticality, Imperial College Press, London, 2005. a
Clerc, J. P., Giraud, G., Laugier, J. M., and Luck, J. M.: The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models, Adv. Phys., 39, 191–309, 1990. a
Csanady, G. T.: Turbulent diffusion of heavy particles in the atmosphere, J. Atmos. Sci., 20, 201–208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2, 1963. a
Day, A. R. and Thorpe, M. F.: The spectral function of random resistor networks, J. Phys. Cond. Matt., 8, 4389–4409, 1996. a
Day, A. R., Grant, A. R., Sievers, A. J., and Thorpe, M. F.: Spectral function of composites from reflectivity measurements, Phys. Rev. Lett., 84, 1978–1981, https://doi.org/10.1103/PhysRevLett.84.1978, 2000. a
Di Lorenzo, E., Mountain, D., Batchelder, H. P., Bond, N., and Hofmann., E. E.: Advances in marine ecosystem dynamics from US GLOBEC: The horizontal-advection bottom-up forcing paradigm, Oceanography, 26, 22–33, https://doi.org/10.5670/oceanog.2013.73, 2013. a, b
Efros, A. L. and Shklovskii, B. I.: Critical behavior of conductivity and dielectric constant near the metal-non-metal transition threshold, Phys. Stat. Sol. (b), 76, 475–485, 1976. a
Engström, C.: Bounds on the effective tensor and the structural parameters for anisotropic two-phase composite material, J. Phys. D, 38, 3695, https://doi.org/10.1088/0022-3727/38/19/019, 2005. a
Fannjiang, A. C.: Phase diagram for turbulent transport: sampling drift, eddy diffusivity, and variational principles, Physica D, 136, 145–174, 2000. a
Feng, S., Halperin, B. I., and Sen, P. N.: Transport properties of continuum systems near the percolation threshold, Phys. Rev. B, 35, 197–214, 1987. a
Golden, K. M.: Convexity and exponent inequalities for conduction near percolation, Phys. Rev. Lett., 65, 2923–2926, 1990. a
Golden, K. M.: Mathematics of sea ice, in: The Princeton Companion to Applied Mathematics, edited by: Higham, N. J., Dennis, M. R., Glendinning, P., Martin, P. A., Santosa, F., and Tanner, J., Princeton University Press, 694–705, https://doi.org/9780691150390, Princeton, 2015. a, b, c
Golden, K. M. and Ackley, S. F.: Modeling of anisotropic electromagnetic reflection from sea ice, J. Geophys. Res.-Oceans, 86, 8107–8116, 1981. a
Golden, K. M., Borup, D., Cheney, M., Cherkaeva, E., Dawson, M. S., Ding, K. H., Fung, A. K., Isaacson, D., Johnson, S. A., , Jordan, A. K., Kong, J. A., Kwok, R., Nghiem, S. V., Onstott, R. G., Sylvester, J., Winebrenner, D. P., and Zabel, I.: Inverse electromagnetic scattering models for sea ice, IEEE T. Geosci. Remote, 36, 1675–1704, 1998b. a, b, c, d
Gully, A., Backstrom, L. G. E., Eicken, H., and Golden, K. M.: Complex bounds and microstructural recovery from measurements of sea ice permittivity, Physica B, 394, 357–362, 2007. a
Halperin, B. I., Feng, S., and Sen, P. N.: Differences between lattice and continuum percolation transport exponents, Phys. Rev. Lett., 54, 2391–2394, 1985. a
Hashin, Z. and Shtrikman, S.: A Variational Approach to the Theory of Effective Magnetic Permeability of Multiphase Materials, J. Appl. Phys., 33, 3125–3131, 1962. a
Hofmann, E. E. and Murphy, E. J.: Advection, krill, and Antarctic marine ecosystems, Antarct. Sci., 16, 487–499, https://doi.org/10.1017/S0954102004002275, 2004. a
Hohenegger, C., Alali, B., Steffen, K. R., Perovich, D. K., and Golden, K. M.: Transition in the fractal geometry of Arctic melt ponds, The Cryosphere, 6, 1157–1162, https://doi.org/10.5194/tc-6-1157-2012, 2012. a, b
Huang, T.-M., Lin, W.-W., and Wang, W.: Matrix representations of discrete differential operators and operations in electromagnetism, Ann. Math. Sci. Appl., 4, 55–79, https://doi.org/10.4310/AMSA.2019.v4.n1.a3, 2019. a
Jonckheere, T. and Luck, J. M.: Dielectric resonances of binary random networks, J. Phys. A, 31, 3687–3717, 1998. a
Kabel, J., Odgaard, A., van Rietbergen, B., and Huiskes, R.: Connectivity and the elastic properties of cancellous bone, Bone, 24, 115–120, 1999. a
Kantor, Y. and Bergman, D. J.: Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids, 32, 41–62, 1984. a
Keller, J. B.: Gravity waves on ice-covered water, J. Geophys. Res.-Oceans, 103, 7663–7669, https://doi.org/10.1029/97jc02966, 1998. a
Kerstein, A. R.: Equivalence of the void percolation problem for overlapping spheres and a network problem, J. Phys. A, 16, 3071–3075, 1983. a
Kozlov, S. M.: Geometric aspects of homogenization, Russ. Math. Surv., 44, 91, 1989. a
Levy, O. and Cherkaev, E.: Effective medium approximations for anisotropic composites with arbitrary component orientation, J. Appl. Phys., 114, 164102, https://doi.org/10.1063/1.4826616, 2013. a
Li, J., Babanin, A. V., Liu, Q., Voermans, J. J., Heil, P., and Tang, Y.: Effects of wave-induced sea ice break-Up and mixing in a high-resolution coupled ice-ocean model, J. Marine Sci. Eng., 9, 365, https://doi.org/10.3390/jmse9040365, 2021. a
Luger, A. and Ou, M.-J. Y.: On Applications of Herglotz-Nevanlinna Functions in Material Sciences, I: Classical Theory and Applications of Sum Rules, 433–459, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-031-04496-0_19, 2022. a
Lukovich, J. V., Hutchings, J. K., and Barber, D. G.: On sea-ice dynamical regimes in the Arctic Ocean, Ann. Glaciol., 56, 323–331, 2015. a
Lytle, V. I. and Ackley, S. F.: Heat flux through sea ice in the Western Weddell Sea: Convective and conductive transfer processes, J. Geophys. Res., 101, 8853–8868, 1996. a
Ma, Y., Sudakov, I., Strong, C., and Golden, K. M.: Ising model for melt ponds on Arctic sea ice, New J. Phys., 21, 063029, https://doi.org/10.1088/1367-2630/ab26db, 2019. a
Majda, A. J. and Kramer, P. R.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Phys. Rep., 237–574, https://doi.org/10.1016/S0370-1573(98)00083-0, 1999. a
Majda, A. J. and Souganidis, P. E.: Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity (Bristol), 7, 1–30, https://doi.org/10.1088/0951-7715/7/1/001, 1994. a
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and Emery, W.: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501, https://doi.org/10.1029/2007GL032043, 2007. a
McPhedran, R. C. and Milton, G. W.: Inverse transport problems for composite media, MRS Proceedings, 195, 257–274, https://doi.org/10.1557/PROC-195-257, 1990. a, b, c
Milton, G. W.: Bounds on the complex permittivity of a two-component composite material, J. Appl. Phys., 52, 5286–5293, 1981. a
Milton, G. W.: Universal bounds on the electrical and elastic response of two-phase bodies and their application to bounding the volume fraction from boundary measurements, J. Mech. Phys. Solids, 60, 139–155, 2012. a
Moffatt, H. K.: Transport effects associated with turbulence with particular attention to the influence of helicity, Rep. Prog. Phys., 46, 621–664, 1983. a
Morison, D., Murphy, N. B., Cherkaev, E., and Golden, K. M.: Order to disorder in quasiperiodic composites, Commun. Phys., 5, 148, https://doi.org/10.1038/s42005-022-00898-z, 2022. a, b, c, d
Mosig, J. E. M., Montiel, F., and Squire, V. A.: Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas, J. Geophys. Res.-Oceans, 120, 6072–6090, https://doi.org/10.1002/2015jc010881, 2015. a
Murphy, N. B., Cherkaev, E., Xin, J., Zhu, J., and Golden, K. M.: Spectral analysis and computation of effective diffusivities in space-time periodic incompressible flows, Ann. Math. Sci. Appl., 2, 3–66, https://doi.org/10.4310/AMSA.2017.v2.n1.a1, 2017b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Murphy, N. B., Cherkaev, E., Zhu, J., Xin, J., and Golden, K. M.: Spectral analysis and computation for homogenization of advection diffusion processes in steady flows, J. Math. Phys., 61, 013102, https://doi.org/10.1063/1.5127457, 2020b. a
Notz, D. and Community, S.: Arctic Sea Ice in CMIP6, Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020. a
Notz, D. and Stroeve, J.: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission, Science, 354, 747–750, 2016. a
Ou, M.: Two-parameter integral representation formula for the effective elastic moduli, Complex Variables and Elliptic Equations, 57, 411–424, 2012. a
Ou, M. J. and Cherkaev, E.: On the integral representation formula for a two-component elastic composite, Math. Meth. Appl. Sci., 29, 655–664, 2006. a
Ou, M.-J. Y. and Luger, A.: On Applications of Herglotz–Nevanlinna Functions in Material Sciences, II: Extended Applications and Generalized Theory, 461–499, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-031-04496-0_20, 2022. a
Pavliotis, G. A.: Asymptotic analysis of the Green–Kubo formula, IMA J. Appl. Math., 75, 951–967, 2010. a
Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice, in: Sea Ice, edited by: Thomas, D. N. and Dieckmann, G. S., 23–77, Wiley-Blackwell, 2009. a
Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., and Stanley, H. E.: Random matrix approach to cross correlations in financial data, Phys. Rev. E, 65, 066126, https://doi.org/10.1103/PhysRevE.65.066126, 2002. a, b, c
Pringle, D. J., Trodahl, H. J., and Haskell, T. G.: Direct measurement of sea ice thermal conductivity: No surface reduction, J. Geophys. Res.-Oceans, 111, C5, https://doi.org/10.1029/2005JC002990, 2006. a
Reimer, J. R., Adler, F. R., Golden, K. M., and Narayan, A.: Uncertainty quantification for ecological models with random parameters, Ecol. Lett., 25, 2232–2244, 2022. a
Sahimi, M.: Applications of Percolation Theory, Taylor and Francis Ltd., London, 1994. a
Sampson, C. S.: Multiscale Models of Sea Ice Phenomena, PhD Thesis, University of Utah, Department of Mathematics, 2017. a
Samson, P. J.: Atmospheric Transport and Dispersion of Air Pollutants Associated with Vehicular Emissions, in: Air Pollution, the Automobile, and Public Health, edited by: Watson, A. Y., Bates, R. R., and Kennedy, D., 77–97, National Academy Press (US), Washington, DC, 692 pp., ISBN 978-0-309-08682-0, 1988. a
Stone, A. D., Mello, P. A., Muttalib, K. A., and Pichard, J.-L.: Random Matrix Theory and Maximum Entropy Models for Disordered Conductors, Chap. 9, 369–448, in: Mesoscopic Phenomena in Solids, edited by: Altshuler, B. L., Lee, P. A., and Webb, R. A., Elsevier Science Publishers, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-444-88454-1.50015-2, 1991. a
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703, 2007. a
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012. a
Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in summer and narrower in winter, Geophys. Res. Lett., 40, 4864–4868, https://doi.org/10.1002/grl.50928, 2013. a
Taylor, G. I.: Diffusion by continuous movements, Proceedings of the London Mathematical Society, Third Series, 2, 196–211, 1921. a
Thaler, A. E. and Milton, G. W.: Exact determination of the volume of an inclusion in a body having constant shear modulus, Inverse Problems, 30, 125008, https://doi.org/10.1088/0266-5611/30/12/125008, 2014. a
Thompson, C. J.: Classical Equilibrium Statistical Mechanics, Oxford University Press, Oxford, ISBN 9780198519843, 1988. a
Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York, https://doi.org/10.1115/1.1483342, 2002. a, b, c
Turner, J., Holmes, C., Harrison, T. C., Phillips, T., Jena, B., Reeves-Francois, T., Fogt, R., Thomas, E. R., and Bajish, C. C.: Record low Antarctic sea ice cover in February 2022, Geophys. Res. Lett., 49, e2022GL098904, *, 2022. a
Untersteiner, N.: The Geophysics of Sea Ice, Plenum, New York, https://doi.org/10.1007/978-1-4899-5352-0, 1986. a
Wang, R. and Shen, H. H.: Gravity waves propagating into an ice-covered ocean: A viscoelastic model, J. Geophys. Res., 115, https://doi.org/10.1029/2009jc005591, 2010. a
Waseda, T., Webb, A., Sato, K., Inoue, J., Cohout, A., Penrose, B., and Penrose, S.: Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean, Sci. Rep., 8, 4489, https://doi.org/10.1038/s41598-018-22500-9, 2018. a
Watanabe, E. and Hasumi, H.: Pacific water transport in the western Arctic Ocean simulated by an eddy-resolving coupled sea ice–ocean model, J. Phys. Oceanogr., 39, 2194–2211, https://doi.org/10.1175/2009JPO4010.1, 2009. a
Weeks, W. F. and Ackley, S. F.: The growth, structure and properties of sea ice, Monograph 82-1, in: The Geophysics of Sea Ice, edited by: Untersteiner, N., Springer US, Boston, MA, 9–164, https://doi.org/10.1007/978-1-4899-5352-0_2, 1982. a, b
Weeks, W. F. and Gow, A. J.: Crystal alignments in the fast ice of Arctic Alaska, J. Geophys. Res., 85, 1137–1146, 1980. a
Wong, P.: The statistical physics of sedimentary rocks, Physics Today, 41, 24–32, 1988. a
Wong, P., Koplick, J., and Tomanic, J. P.: Conductivity and permeability of rocks, Phys. Rev. B, 30, 6606–6614, 1984. a
Worster, M. G. and Jones, D. W. R.: Sea-ice thermodynamics and brine drainage, Philos. T. Roy. Soc. A, 373, 20140166, https://doi.org/10.1098/rsta.2014.0166, 2015. a
Xin, J.: An Introduction to Fronts in Random Media, Surveys and Tutorials in the Applied Mathematical Sciences, Springer New York, https://doi.org/10.1007/978-0-387-87683-2, 2009. a
Yen, Y.-C.: Review of thermal properties of snow, ice, and sea ice, vol. 81, US Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1981. a
Short summary
Our paper tours powerful methods of finding the effective behavior of complex systems, which can be applied well beyond the initial setting of sea ice. Applications include transport properties of porous and polycrystalline media, such as rocks and glacial ice, and advection diffusion processes that arise throughout geophysics. Connections to random matrix theory establish unexpected parallels of these geophysical problems with semiconductor physics and Anderson localization phenomena.
Our paper tours powerful methods of finding the effective behavior of complex systems, which can...