Dawes, G. J. K.: Magnetotelluric feasibility study: Island of Milos,
Greece, Luxembourg,
Edinburgh Univ. (UK). Dept. of Geophysics, Luxembourg, Report Number EUR-10674, Reference Number: ERA-13-007410, EDB-88-008365, 1986.
Dosso, S. E. and Oldenburg, D. W.: Magnetotelluric appraisal using simulated
annealing, Geophys. J. Int., 106, 379–385,
https://doi.org/10.1111/j.1365-246X.1991.tb03899.x, 1991.
Essa, K. S. and Diab, Z. E.: Gravity data inversion applying a metaheuristic
Bat algorithm for various ore and mineral models, J. Geodyn., 155, 101953,
https://doi.org/10.1016/j.jog.2022.101953, 2023.
Essa, K. S., Abo-Ezz, E. R., Géraud, Y., and Diraison, M.: A successful
inversion of magnetic anomalies related to 2D dyke-models by a particle
swarm scheme, J. Earth Syst. Sci., 132, 65,
https://doi.org/10.1007/s12040-023-02075-4, 2023.
Hutton, V. R. S., Galanopoulos, D., Dawes, G. J. K., and Pickup, G. E.: A
high resolution magnetotelluric survey of the Milos geothermal prospect,
Geothermics, 18, 521–532, https://doi.org/10.1016/0375-6505(89)90054-0,
1989.
Jain, S. and Wilson, C. D. V.: Magneto-Telluric Investigations in the Irish
Sea and Southern Scotland, Geophys. J. Int., 12, 165–180,
https://doi.org/10.1111/j.1365-246X.1967.tb03113.x, 1967.
Jones, A. G. and Hutton, R.: A multi-station magnetotelluric study in
southern Scotland – I. Fieldwork, data analysis and results, Geophys. J.
Int., 56, 329–349, https://doi.org/10.1111/j.1365-246X.1979.tb00168.x,
1979.
Kennedy, J. and Eberhart, R.: Particle swarm optimization, in: Proceedings
of ICNN'95 – International Conference on Neural Networks, 1942–1948 vol.4,
https://doi.org/10.1109/ICNN.1995.488968, 1995.
Khishe, M. and Mosavi, M. R.: Chimp optimization algorithm, Expert Syst.
Appl., 149, 113338, https://doi.org/10.1016/j.eswa.2020.113338, 2020.
Kunche, P., Sasi Bhushan Rao, G., Reddy, K. V. V. S., and Uma Maheswari, R.:
A new approach to dual channel speech enhancement based on hybrid PSOGSA,
Int. J. Speech Technol., 18, 45–56,
https://doi.org/10.1007/s10772-014-9245-5, 2015.
Leslie, A. G., Millward, D., Pharaoh, T., Monaghan, A. A., Arsenikos, S., and Quinn, M.: Tectonic synthesis and contextual setting for the Central North Sea and adjacent onshore areas, 21CXRM Palaeozoic Project,
https://nora.nerc.ac.uk/id/eprint/516757/1/21CXRM_Tectonic_synthesis_Leslieetal_CR_15_125N_Finalv2.pdf (last access: 24 March 2016), 2015.
Li, S.-Y., Wang, S.-M., Wang, P.-F., Su, X.-L., Zhang, X.-S., and Dong,
Z.-H.: An improved grey wolf optimizer algorithm for the inversion of
geoelectrical data, Acta Geophys., 66, 607–621,
https://doi.org/10.1007/s11600-018-0148-8, 2018.
Lynch, S. M.: Introduction to applied Bayesian statistics and estimation for
social scientists, Springer, New York, https://doi.org/10.1007/978-0-387-71265-9, 2007.
Miecznik, J., Wojdyła, M., and Danek, T.: Application of
nonlinear methods to inversion of 1D magnetotelluric sounding data based on
very fast simulated annealing, Acta Geophys. Pol., 51, 307–322,
2003.
Mirjalili, S. and Hashim, S. Z. M.: A new hybrid PSOGSA algorithm for
function optimization, in: 2010 International Conference on Computer and
Information Application, 374–377,
https://doi.org/10.1109/ICCIA.2010.6141614, 2010.
Mirjalili, S., Mirjalili, S. M., and Lewis, A.: Grey Wolf Optimizer, Adv.
Eng. Softw., 69, 46–61, https://doi.org/10.1016/j.advengsoft.2013.12.007,
2014.
Nabighian, M. N. and Asten, M. W.: Metalliferous mining geophysics – State
of the art in the last decade of the 20th century and the beginning of the
new millennium, Geophysics, 67, 964–978, https://doi.org/10.1190/1.1484538,
2002.
Pace, F., Raftogianni, A., and Godio, A.: A Comparative Analysis of Three
Computational-Intelligence Metaheuristic Methods for the Optimization of
TDEM Data, Pure Appl. Geophys., 179, 3727–3749,
https://doi.org/10.1007/s00024-022-03166-x, 2022.
Pérez-Flores, M. A. and Schultz, A.: Application of 2-D inversion with
genetic algorithms to magnetotelluric data from geothermal areas, Earth
Planets Space, 54, 607–616, https://doi.org/10.1186/BF03353049, 2002.
Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S.: GSA: A Gravitational
Search Algorithm, Inf. Sci., 179, 2232–2248,
https://doi.org/10.1016/j.ins.2009.03.004, 2009.
Rodi, W. and Mackie, R. L.: Nonlinear conjugate gradients algorithm for 2-D
magnetotelluric inversion, Geophysics, 66, 174–187,
https://doi.org/10.1190/1.1444893, 2001.
Ross, S.: Probability and statistics for engineers and scientists, Elsevier,
New Delhi, https://www.sciencedirect.com/book/9780123704832/introduction-to-probability-and-statistics-for-engineers-and-scientists (last access: 2014), 2009.
Roy, A. and Kumar, T. S.: Gravity inversion of 2D fault having variable
density contrast using particle swarm optimization, Geophys. Prospect., 69,
1358–1374, https://doi.org/10.1111/1365-2478.13094, 2021.
Sen, M. K. and Stoffa, P. L.: Bayesian inference, Gibbs' sampler and
uncertainty estimation in geophysical inversion1, Geophys. Prospect., 44,
313–350, https://doi.org/10.1111/j.1365-2478.1996.tb00152.x, 1996.
Sen, M. K. and Stoffa, P. L.: Global Optimization Methods in Geophysical
Inversion, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511997570, 2013.
S̨enel, F. A., Gökçe, F., Yüksel, A. S., and Yiğit, T.: A
novel hybrid PSO–GWO algorithm for optimization problems, Eng. Comput., 35,
1359–1373, https://doi.org/10.1007/s00366-018-0668-5, 2019.
Sharma, S. P.: VFSARES – a very fast simulated annealing FORTRAN program for
interpretation of 1-D DC resistivity sounding data from various electrode
arrays, Comput. Geosci., 42, 177–188,
https://doi.org/10.1016/j.cageo.2011.08.029, 2012.
Shaw, R. and Srivastava, S.: Particle Swarm Optimization: A new tool to
invert geophysical data, Geophysics, 72, F75–F83, https://doi.org/10.1190/1.2432481,
2007.
Simon, D.: Biogeography-Based Optimization, IEEE Trans. Evol. Comput., 12,
702–713, https://doi.org/10.1109/TEVC.2008.919004, 2008.
Simpson, F. and Bahr, K.: Practical Magnetotellurics, Cambridge University
Press, https://doi.org/10.1017/CBO9780511614095, 2005.
Stewart, A. L. and McPhie, J.: Facies architecture and Late Pliocene –
Pleistocene evolution of a felsic volcanic island, Milos, Greece, Bull.
Volcanol., 68, 703–726, https://doi.org/10.1007/s00445-005-0045-2, 2006.
Storn, R. and Price, K.: Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces, J. Glob. Optim.,
11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997.
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9780898717921, 2005.
Tarantola, A. and Valette, B.: Generalized nonlinear inverse problems solved
using the least squares criterion, Rev. Geophys., 20, 219–232,
https://doi.org/10.1029/RG020i002p00219, 1982.
Ward, S. H. and Hohmann, G. W.: 4. Electromagnetic Theory for Geophysical
Applications, in: Electromagnetic Methods in Applied Geophysics: Volume 1,
Theory, Society of Exploration Geophysicists, 130–311,
https://doi.org/10.1190/1.9781560802631.ch4, 1988.
Wen, L., Cheng, J., Li, F., Zhao, J., Shi, Z., and Zhang, H.: Global
optimization of controlled source audio-frequency magnetotelluric data with
an improved artificial bee colony algorithm, J. Appl. Geophys., 170, 103845,
https://doi.org/10.1016/j.jappgeo.2019.103845, 2019.
Whitley, D.: A genetic algorithm tutorial, Stat. Comput., 4, 65–85,
https://doi.org/10.1007/BF00175354, 1994.
Xiong, J., Liu, C., Chen, Y., and Zhang, S.: A non-linear geophysical
inversion algorithm for the mt data based on improved differential
evolution, Eng. Lett., 26, 161–170, 2018.
Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired
Cooperative Strategies for Optimization (NICSO 2010), edited by:
González, J. R., Pelta, D. A., Cruz, C., Terrazas, G., and Krasnogor,
N., Springer Berlin Heidelberg, Berlin, Heidelberg, 65–74,
https://doi.org/10.1007/978-3-642-12538-6_6, 2010a.
Yang, X.-S.: Firefly algorithm, stochastic test functions and design
optimisation, Int J Bio Inspired Comput, 2, 78–84,
https://doi.org/10.48550/arxiv.1003.1409, 2010b.
Zhang, Z., Ding, S., and Jia, W.: A hybrid optimization algorithm based on
cuckoo search and differential evolution for solving constrained engineering
problems, Eng. Appl. Artif. Intell., 85, 254–268,
https://doi.org/10.1016/j.engappai.2019.06.017, 2019.