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Abstract. In this paper, we have developed three algorithms, namely hybrid weighted particle swarm optimiza-
tion (wPSO) with the gravitational search algorithm (GSA), known as wPSOGSA; GSA; and PSO in MATLAB
to interpret one-dimensional magnetotelluric (MT) data for some corrupted and non-corrupted synthetic data, as
well as two examples of MT field data over different geological terrains: (i) geothermally rich area, island of
Milos, Greece, and (ii) southern Scotland due to the occurrence of a significantly high electrical conductivity
anomaly under crust and upper mantle, extending from the Midland Valley across the Southern Uplands into
northern England. Even though the fact that many models provide a good fit in a large predefined search space,
specific models do not fit well. As a result, we used a Bayesian statistical technique to construct and assess the
posterior probability density function (PDF) rather than picking the global model based on the lowest misfit
error. The study proceeds using a 68.27 % confidence interval for selecting a region where the PDF is more
prevalent to estimate the mean model which is more accurate and close to the true model. For illustration, cor-
relation matrices show a significant relationship among layer parameters. The findings indicate that wPSOGSA
is less sensitive to model parameters and produces more stable and reliable results with the least uncertainty in
the model, compatible with existing borehole samples. Furthermore, the present methods resolve two additional
geologically significant layers, one highly conductive (less than 1.0�m) and another resistive (300.0�m), over
the island of Milos, Greece, characterized by alluvium and volcanic deposits, respectively, as corroborated by
borehole stratigraphy.

1 Introduction

The magnetotelluric (MT) method is a natural source elec-
tromagnetic method that explores various natural resources,
namely hydrocarbon, minerals, geothermal prospects,
groundwater, and metalliferous ores, etc. (Nabighian and
Asten, 2002; Simpson and Bahr, 2005). Due to its instability,
non-unique solution, and algorithm sensitivity, MT data
interpretation is thought-provoking. Many researchers have
attempted and developed various inversion algorithms to in-
terpret and improve the model accuracy, convergence speed,
and stability and reduce the uncertainty of the solutions
(Kirkpatrick et al., 1983; Constable et al., 1987; Rodi and
Mackie, 2001; Li et al., 2018; Zhang et al., 2019; Khishe

and Mosavi, 2020). There are mainly two categories of the
inversion algorithm: first, the local optimization methods,
namely the conjugate gradient, Levenberg–Marquardt/ridge
regression, the Gauss-Newton algorithm, the steepest de-
scent, and Occam’s inversion, which require a good initial
guess (Shaw and Srivastava, 2007; Wen et al., 2019; Roy
and Kumar, 2021). Another category is global optimization
techniques (i.e., ant colony optimization, genetic algorithm,
particle swarm optimization, gravitational search algorithm,
and simulated annealing, etc.), which do not require an
initial guess. Many researchers have carried out numerous
metaheuristic optimization algorithms to invert MT data
(Dosso and Oldenburg, 1991; Pérez-Flores and Schultz,
2002; Miecznik et al., 2003; Sen and Stoffa, 2013). These
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algorithms are inspired by natural phenomena and have
various geophysical applications, including particle swarm
optimization (Kennedy and Eberhart, 1995; Essa et al.,
2023), the genetic algorithm (Whitley, 1994), Bat algorithm
(Yang, 2010a; Essa and Diab, 2023), differential evolution
(Storn and Price, 1997), biogeographically based optimiza-
tion (Simon, 2008), the firefly algorithm (Yang, 2010b),
grey wolf optimizer (Mirjalili et al., 2014), ant colony
optimization (Colorni et al., 1991), the gravitational search
algorithm (Rashedi et al., 2009), and the novel barnacles
mating optimizer algorithm (Ai et al., 2022).

However, unique characteristics, namely exploration and
exploitation, persist in any global optimization algorithm.
For example, the particle swarm optimization (PSO) algo-
rithm has a very high potential for exploitation, which im-
plies that the algorithm performs well in a local search but
is inferior in exploration (Sęnel et al., 2019). This suggests
that the algorithm has a limited capacity to estimate the best
model in an extensive search range. Because of low explo-
ration characteristics, it gets trapped at the local minima
(Mirjalili and Hashim, 2010). So, integrating the two algo-
rithms with opposite characteristics is the best way to bal-
ance exploration and exploitation characteristics to achieve
better solutions than the results obtained from an individual
algorithm.

Here, we utilized weighted hybrid PSOGSA (wPSOGSA),
a new global optimization method that takes into account
the algorithm based on natural behavior seen in birds, fish,
and insects, known as PSO, and gravity-based Newton’s
law (with high exploration capability), known as the grav-
ity search algorithm (GSA). Researchers interested in artifi-
cial intelligence and developing effective optimization algo-
rithms for comparative analysis of different metaheuristic al-
gorithms (Pace et al., 2022) have been drawn to notable char-
acteristics in such social behavior. The wPSOGSA, PSO, and
GSA are used to estimate the resistivity distribution of 1D
multi-layered Earth models using synthetic (noise-free and
noisy) data for three- and four-layer cases, taken from Shaw
and Srivastava (2007) and Xiong et al. (2018), respectively,
and field MT sounding data for six- and four-layer cases,
taken from Hutton et al. (1989) and Jones and Hutton (1979),
respectively.

Furthermore, numerous (here 10 000) models that fit well
are optimized to obtain the mean model, which is pre-
ceded by calculating the posterior probability density func-
tion (PDF) based on Bayesian concepts using all accepted
models to find the optimal mean solution with the least un-
certainty, as well as a correlation matrix to determine the re-
lationships among the layer parameters. Thus, the research
reveals that the wPSOGSA method may be utilized to pro-
vide a more accurate and reliable model with superior sta-
bility, a quick rate of convergence, and the least amount of
model uncertainty.

2 Data and methodology

2.1 Synthetic and field data

Different MT datasets are utilized to evaluate the proposed
wPSOGSA’s effectiveness, sensitivity, stability, and robust-
ness in outlining the genuine subsurface structure. These
datasets are noise-free and Gaussian noise synthetic data pro-
duced for several geological formations, and two MT field
data have been optimized for analysis.

To demonstrate and evaluate the robustness of the present
algorithms, we have generated a synthetic MT apparent re-
sistivity and apparent phase dataset without noise and with
noise levels (10 % and 20 % noise) considering a three-
layer typical continental crustal model with a total thick-
ness of 33 000 m (i.e., 33.0 km) and a resistivity of the upper
crust of 30 000.0�m with 15 000 m (i.e., 15 km) thickness
(high resistive layer) and a resistivity of the middle crust of
5000.0�m with 18 000 m (i.e., 18.0 km) thickness (reason-
able low resistive layer) underlain by 1000�m (low resis-
tive) half space taken from Shaw and Srivastava (2007).

For the second example of the synthetic data, a typical
four-layer HK-type of Earth model taken from Xiong et
al. (2018) is generated by forward modeling equations for the
demonstration of the wPSOGSA, PSO, and GSA, and their
performance is compared with improved differential evolu-
tion (IDE) results obtained by Xiong et al. (2018).

We utilized the first example of field data taken from Hut-
ton et al. (1989) on the island of Milos, Greece. Milos is
a part of the South Aegean active volcanic arc, an example
of an emergent volcanic edifice (Stewart and McPhie, 2006)
formed by monogenetic effusive and explosive magmatism
pulses. Milos is the world’s biggest exporter of bentonite,
and it also has a diverse variety of metalliferous and non-
metalliferous mineral reserves. It is a conserved on-land lab-
oratory for studying shallow underwater hydrothermal ore-
forming processes. The accompanying shallow subsurface
hydrothermal venting fields have had significantly less atten-
tion. Dawes (1986) used magnetotelluric data to assess the
resistivity structure of the geothermal area on Milos’ west
side. With around 3.0 km spacing, 37 MT probes in the band-
width of 100–0.01 Hz and 12 investigations in the bandwidth
of 0.01–0.0001 Hz were installed, along with various profiles
that were perpendicular to the Zephyria graben in the W–E
direction, as well as along the graben in the S–N direction
(Hutton et al., 1989).

Another field example of MT data from Jones and Hut-
ton (1979) was picked to illustrate our technique from
Newcastleton (55.196◦ N, 2.796◦W, in geographic coordi-
nates), Southern Uplands of Scotland. By the Southern Up-
lands fault, the Southern Uplands are isolated from the
Midland Valley. The bulk of the Southern Uplands com-
prises Silurian–lower Paleozoic sedimentary deposits such as
greywackes and shales that originated in the Iapetus Ocean
during the late Neoproterozoic and early Paleozoic geologic
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eras. These rocks emerged from the seafloor as an accre-
tionary wedge during the Caledonian orogeny. The major-
ity of the rocks are coarse greywacke, a kind of sandstone
that has been poorly metamorphosed and contains angular
quartz, feldspar, and small rock fragments. The Midland Val-
ley and northern England, on the other hand, are known for
their thick Carboniferous layers, which are used to measure
coal.

2.2 Forward modeling – magnetotelluric formulation for
1-D Earth

The ability to formulate an effective inversion method re-
quires a thorough understanding of the forward modeling
technique for the issue of interest. Factors like frequency
range, actual resistivity, and layer thickness are used to cre-
ate datasets of synthetic MT apparent resistivity, ρa (ω), and
apparent phase, ϕa (ω). The electromagnetic impedance (Z)
for layered structures is described in terms of an orthogonal
electric field, magnetic field, wavenumber (k), reflection co-
efficient (R), and exponent factor (τf) with angular frequency
(ω) as (Ward and Hohmann, 1988)

Z =
µ0ω

k
=
Ex

Hy
=−

Ey

Hx
, (1)

where the wavenumber (k)=
√
−iµ0ω/ρ, Ex and Ey are

components of the electric field, andHx andHy are the com-
ponents of the magnetic field.

If displacement currents are not taken into account, Eq. (1)
becomes

Z =
µ0ω

√
−iµ0ω/ρ

=
√
iµ0ωρ

=
√
µ0ωρe

iπ
4 = ω

(1−Rτf)
(1+Rτf)

. (2)

Noisy impedance is calculated by the following equation:

Znoisy = Z+Z× (2× rand− 1)× noisepercent. (3)

If the angle between impedance phase with Ex is 45◦, then
the resistivity (ρ) in half space of impedance Z(ω) and time
period (T ) can be written as

ρ (ω)=
1
µ0ω
|Z(ω)|2 =

0.2T
µ0

∣∣∣∣ExHy
∣∣∣∣2. (4)

Thus, the apparent resistivity and apparent phase are defined
(Cagniard, 1953; Ward and Hohmann, 1988) as follows:

apparent resistivity,

ρa (ω)=
1
µ0ω

[
Z(ω)Z∗(ω)

]
, (5)

and apparent phase,

ϕa (ω)= tan−1
(

img(Z (ω))
real (Z (ω))

)
, (6)

where the exponent factor τf = exp(−2γ h), the induction pa-
rameter γ =

√
iωµ0/ρ, h is the layer thickness, µ0 is the

magnetic permeability for free space, Z∗ is the complex con-
jugate of impedance, and “rand” is used for generating a ran-
dom number between 0 and +1.

2.3 Global optimization technique

The techniques that we have used for the joint modeling of
metaheuristic global optimization, namely PSO, GSA, and
wPSOGSA in Step 1 and posterior Bayesian probability den-
sity function technique in Step 2, obtain the global model by
utilizing the synthetic data generated by using forward mod-
eling and field MT apparent resistivity and phase curves, de-
picted in the schematic diagram (Fig. 1).

2.4 Optimization and error estimation

In the present study, we have implemented a new innova-
tive global optimization technique known as wPSOGSA, in
which swarm particles and mass particles provide the best
particle, i.e., the best model. The best model is chosen based
on the fitness of the particles, and the cost function or objec-
tive function is used to estimate this fitness. Thus the magne-
totelluric (MT) inverse problem can be formulated through
the forward modeling operator, f (x), to achieve the resistiv-
ity model, which illuminates the observed data ρ and ϕ. This
operator combines the problem of physics and inverts the ob-
served apparent resistivity and phase data to the resistivity–
depth model, x, as

(ρ,ϕ)= f (x) . (7)

The cost function (fitness of the particle) is a mathematical
relation between observed and calculated data, and the root
mean square error (RMSE) is defined as follows:

RMSE=

√{
(ρ− ρC)2

N
+

(ϕ−ϕC)2

N

}
, (8)

where N is the total observed data points, ρ and ϕ are the
observed apparent resistivity and phase, and ρC and ϕC are
the computed apparent resistivity and phase data.

2.5 Particle swarm optimization

The particle swarm optimization (PSO) technique is a
widespread evolutionary optimization approach for deter-
mining the optimal global solution to a nonlinear inverse
problem (Kennedy and Eberhart, 1995). This technique is
analogous to the particle’s natural behavior in search of
food with the help of collaborative support from the popula-
tion represented by geophysical resistivity solutions/models
(known as particles) in a swarming group. The best mod-
el/position obtained among the particles so far is stored for
each iteration, which helps in search of the global best solu-
tion, defined by the fitness of each particle estimated using
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Figure 1. Schematic diagram demonstrating the essential processes considered for the joint modeling of metaheuristic global optimization
(Step 1) and the posterior PDF technique (Step 2) to obtain the global model by utilizing synthetic and field MT data.

Eq. (8). The velocity and location of the kth particle at the
t th iteration are defined as

vk (t + 1)= wvk (t)+ c1× rand×
(
xp− xk (t)

)
+ c2× rand×

(
xg− xk (t)

)
(9)

xk (t + 1)= xk (t)+ vk (t + 1) , (10)

where w is the inertia weight set between 0 and 1; c1 and c2
are a personal learning coefficient and a global learning co-
efficient, respectively; vk (t) is the velocity of the kth particle
at t th iteration; rand is used for a random number between
0 and 1; xp is the present best solution, xg is the global best
solution, and xk (t) is the position of the kth particle at the
t th iteration. Particles change their position at each iteration
to approach an optimum solution. The first, second, and third
terms in Eq. (9) represent exploratory ability, private thought,
and particle collaboration, respectively.

2.6 Gravitational search algorithm

The gravitational search algorithm (GSA) is a metaheuris-
tic algorithm based on Newton’s gravitational law (Rashedi
et al., 2009), which states that mass particles attract each
other with a gravitational force that is directly proportional to
the product of their masses and inversely proportional to the
square of the distance between them. It signifies that massive
particles (here, particle represents the resistivity layer mod-
el/solution) attract the neighboring lighter particles. Similar

to PSO, the gravitational search optimizer works with a pop-
ulation of particles known as mass particles in the universe.
Thus the best model, solution, or particle is achieved among
the mass particles. The best model is defined by each par-
ticle’s capability (i.e., the fitness), calculated using Eq. (8).
The initialization of their position in the search spaces is
given by

x = rand(N,D)× (up− down)+ down, (11)

where N and D are the number of particles and models, i.e.,
the dimension of the model, and “up”, and “down” are the
upper and lower limit of the search range, respectively.

During execution time, the gravitational acting force on
agent kth from agent j th at a specific time (t) is defined as

Fk,j (t)= G (t)
Mp,k (t) ·Ma,j (t)
Rk,j (t)+ ε

(
xj (t)− xk (t)

)
, (12)

where Ma,j and Mp,k are the active and passive gravitational
masses for particle j and k, respectively; xj (t) is the position
of the particle j at a time t for various parameters; Rk,j (t) is
the Euclidian distance between two particles; and ε is a small
constant.

Here, the gravitational constant G (t) at a specific time t is
defined as in Kunche et al. (2015), and the acceleration of the
kth agent at the t th iteration for models is ack (t), defined as

ack (t)=
Fk (t)
Mk (t)

, (13)
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where Fk,j (t) the gravitational acting force on agent k from
agent j , andMk (t) is the mass of the object at a specific time
(t).

G (t)=G0× exp
(
−α×

iter
maxiter

)
, (14)

where α, G0, “iter”, and “maxiter” are descending coeffi-
cients, starting value of gravitational constant, current iter-
ation, and maximum iterations, respectively.

The following equations are used to update the particle’s
velocity and location:

vk (t + 1)= rand× vk (t)+ ack (t) (15)
xk (t + 1)= xk (t)+ vk (t + 1) . (16)

All the particles are randomly placed in the search range us-
ing Eq. (11), and then the particle’s velocity is initialized.
Meanwhile, the gravitational constant, total forces, and ac-
celeration are computed, and the locations are updated. The
end criterion, the misfit error (i.e. 10−9), is taken in our study.

2.7 Weighted hybrid PSOGSA (wPSOGSA)

The weighted hybrid of PSO and GSA, known as wP-
SOGSA, integrates two essential characteristics, exploration
(i.e., the ability of an algorithm to search the whole range of
a given parameter) and exploitation (i.e., the ability to con-
verge the solution nearest to the best solution) of the global
optimization algorithm that increases its efficiency and con-
verges the objective function to achieve global minima. The
velocity and location of the particles updated in the wP-
SOGSA are illustrated in the schematic diagram (see Fig. 2).

The wPSOGSA combines the characteristic of social
thinking of PSO and the searching capability of GSA; thus,
the particle’s velocity is defined as

vk (t + 1)= w× vk (t)+ c1× rand× ack (t)

+ c2× rand× (xg− xk (t)), (17)

where vk (t) is the velocity of the particle k at iteration t , w
is the weight function (i.e., the constant which helps to con-
trol the momentum of the algorithm to perform optimization
properly), ack(t) is the acceleration of agent k, xg is the best
solution, and rand is a random number that lies between 0
and 1. At each iteration, particles updated their location to
achieve the best solution defined as

xk (t + 1)= xk (t)+ vk (t + 1) . (18)

The algorithm starts by randomly initializing the velocity,
mass, and acceleration of the particles. The cost function is
evaluated for all particles for specified iterations to get the
most optimal solution, and inverted results are updated at
each iteration. Equations (12), (17), and (18) are used to up-
date the gravitational force, velocity, and location of particles
after initialization. However, the velocity and position stop
updating their values when the algorithm converge, and the
least error of the cost function is reached.

Figure 2. Flow chart of the weighted hybrid particle swarm opti-
mization and gravity search algorithm, known as wPSOGSA (after
Mirjalili and Hashim, 2010).

2.8 Bayesian probability density function

In a Bayesian framework, the probability distribution of the
model parameters (known as posterior probability distribu-
tion) is computed using given observed data and models ob-
tained from inversion. The posterior for a model is calcu-
lated using Bayes’ theorem and previous model space infor-
mation. Individual model parameter ranges are incorporated
into the prior knowledge. The two fundamental stages in the
Bayesian statistics method are the representation of previous
knowledge as a probability density function and calculation
of the likelihood functional derived from data misfit (Taran-
tola and Valette, 1982). Specific characteristics, such as the
best fitting model, mean model, and correlation matrix, may
be determined from posterior distribution of models. Accord-
ing to Bayes’ theorem,

posterior= prior× likelihood. (19)

As a result, our priori distribution function (f (µ)) for the
parameter, xu; mean priori information, M; and t2, the mean
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uncertainty, is defined as

f (µ)=
1

√
2πt2

exp

{
−

(xu−M)2

2t2

}
, (20)

and the likelihood function is

f (X|µ)=
n∏
u=1

1
√

2πσ 2
exp

{
−

(xu−µ)2

2σ 2

}
. (21)

Hence the posterior density function calculated for a param-
eter (xu) using mean (µ) and variance (σ 2) defined (Lynch,
2007) as

f (µ|X)=
1

√
t2σ 2

exp


−(µ−M)2

2t2
+

n∑
u=1

(xu−µ)2

2σ 2

. (22)

The posterior Bayesian PDF is calculated from accepted
models within a set of parameters, as shown below:

P (X|E)=
P (X)L(E|X)∑
X

P (X)L(E|X)
, (23)

where P (X|E) is the posterior probability distribution of the
parameter (X) given the evidence (E), P (X) is the prior in-
formation of (X), and L(E|X) is the likelihood function of
X.

After the application of the PDF, the study further pro-
ceeds by choosing a confidence interval (CI) of 68.27 % that
is based on the empirical rule, known as the 68–95–99.7 rule
(Ross, 2009). The model parameters below 68.27 % CI are
discarded, and the remaining parameters are used for de-
termining the mean model and uncertainty. Thus, the mean
model (Pj ) is calculated using the best models having a PDF
within a 68.27 % CI, defined in the following equation:

Pj = exp
1
Nd

∑
ln
(
Pj,k

)
. (24)

Here accepted models are used to calculate the correlation
matrix (i.e., correlation among model parameters lie between
−1 and 1) using the following equation (Tarantola, 2005):

CovP (l, j )=
1
Nd

∑(
Pl,k −Pl

)(
Pj,k −Pl

)
(25)

and

CorP (l, j )=
CovP (l, j )

√
CovP (l, l)×CovP (j,j )

. (26)

Here, N is the total number of models; d is used for the
number of the layer parameters; and Pj,k is the j th model
parameter of the kth model, where l and j both vary from 1
to d (number of layer parameters). CovP (l, j ) is the covari-
ance matrix between model parameters l and j , Pl,k is the
lth model parameter of the kth model, and CorP (l, j ) is the
correlation matrix between model parameters l and j .

3 Results and analysis

The effectiveness, sensitivity, stability, and robustness of the
proposed wPSOGSA in identifying the authentic subsurface
structure are evaluated using various MT datasets. These
datasets consist of synthetic data with no noise and Gaus-
sian noise, which simulate different geological formations.
Additionally, two MT field datasets have been optimized for
analysis.

3.1 Application to synthetic MT data – three-layer case

The first example of synthetic MT data was executed for
10 000 runs, keeping the same lower and upper bounds as
given in Table 1 and iterations to 1000. Figure 3 shows (a) the
observed apparent resistivity with the computed data; (b) the
observed apparent phase with the computed data; (c) the
1D inverted model by wPSOGSA (red color), GSA (green
color), and PSO (blue color) with a true model (black color);
and (d) the relation between the misfit and iterations for the
noise-free synthetic data.

The misfit curve as shown in Fig. 3d is gradually decreas-
ing with increasing iterations and becomes constant where
the algorithm converges. The PSO, GSA, and wPSOGSA
converge at iterations 492, 35, and 316, with associated errors
of 1.51×10−6, 3.97×10−6, and 1.035×10−8 and associated
computational times of 27.06, 1.75, and 3.35 s, respectively.
Thus, the curves show that wPSOGSA converges at the least
RMSE. In contrast, PSO, GSA, and wPSOGSA using 10 %
noisy synthetic data converge at 102, 88, and 358 iterations,
with associated errors of 0.00435, 0.00439, and 0.00426 and
associated computational times of 5.61, 4.40, and 3.80 s, re-
spectively.

The 20 % noisy synthetic MT data were executed for
10 000 runs, keeping the same lower bound, upper bound,
and iterations. The well-fitted inverted MT response (see
Fig. 4) was as follows: (a) the corrupted synthetic and cal-
culated apparent resistivity data, (b) the corrupted synthetic
and calculated apparent phase data, (c) the inverted 1D depth
model, and (d) convergence response in terms of misfit er-
ror versus iterations. We analyzed Fig. 4d and found that the
PSO, GSA, and wPSOGSA using noisy synthetic data con-
verge at iterations 236, 7, and 73, with associated errors of
0.0394, 0.0408, and 0.0393, respectively.

3.1.1 Bayesian analysis and uncertainty in model
parameters

Two methods are used to estimate a mean solution and
uncertainty: one method is the mean solution for all ac-
cepted best-fitted solutions acquired from 10 000 runs for all
three global optimization techniques; another method is the
model derived from all approved solutions using the poste-
rior Bayesian PDF within 1 standard deviation. To get the
global best solutions in our study, we incorporated the pos-
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Figure 3. The inverted MT response by PSO (blue color), GSA (green color), and hybrid wPSOGSA (red color) with a true model (black
color) over three-layer synthetic data as shown in (a) the observed and calculated apparent resistivity curve, (b) the observed and calculated
apparent phase curve, (c) the 1D depth inverted model, and (d) the misfit error versus iterations.

Figure 4. The inverted MT response by PSO (blue color), GSA (green color), and hybrid wPSOGSA (red color) with a true model (black
color) over three-layer synthetic data with 20 % random noise as shown in (a) the observed and calculated apparent resistivity curve, (b) the
observed and calculated apparent phase curve, (c) the 1D depth inverted model, and (d) the misfit error versus iterations.
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Figure 5. The posterior Bayesian probability density function (PDF) with 68.27 % CI for wPSOGSA for three-layered synthetic data.

terior PDF based on the Bayesian approach to enhance the
efficacy of the inverted model and minimize the uncertainty
in the model. The process for obtaining the mean solution
proceeds by selecting an initial threshold error, which is es-
sential because the smaller the threshold value, the more sig-
nificant the number of models with less uncertainty in the
model parameters (Sharma, 2012). Thus, a more consider-
able threshold gives a lower number of models with enor-
mous uncertainty in the model parameter (Sen and Stoffa,
1996; Sharma, 2012). The study proceeds by calculating the
PDF for each parameter value using Eq. (22). In order to se-
lect values of each parameter that having a higher posterior
PDF, a 68.27 % CI is used. The mean model obtained from
selected model parameters is near to the actual model.

Figure 5 shows the output of the posterior Bayesian PDF,
which selects model parameters with less error. The straight
lines (dashed lines) present the actual value of the respec-
tive layer parameters. The first-layer thickness, second-layer
thickness, and first-layer resistivity have higher uncertainties,
i.e., 61.25 m, 51.47 m, and 210.61�m, respectively, whereas
the second-layer resistivity and third-layer resistivity have
lower uncertainty, i.e., 17.71 and 0.03�m, respectively.

Table 1 shows the inverted layer parameters using wP-
SOGSA, GSA, and PSO for noise-free and noisy synthetic
MT data based on the posterior Bayesian PDF, as well as the
actual model and the search range. In addition, layered prop-
erties of synthetic data corrupted with 10 % and 20 % random
noise are compared and statistically analyzed. Our findings,
as shown in Table 1, were compared to those obtained using
the genetic algorithm (GA), ridge regression (RR), and PSO
by Shaw and Srivastava (2007), which consistently outper-
form GA and RR, which is closer to the genuine model.

The mean values of the accepted model parameters
are 30243.42± 471.26, 5007.04± 39.59, 1000.02± 0.064,
14969.33± 136.82, and 18029.76± 114.90, and their asso-
ciated amounts of uncertainty are 1.5 %, 0.78 %, 0.0064 %,
0.91 %, and 0.63 %. On the basis of a low posterior PDF and
high uncertainty, we have taken (ρ1) and (h1) for the exercise
to show the models are not biased to the selected models.

As well as being based on the histograms (see Fig. 6), the
posterior PDF and uncertainty of the inverted layer parame-
ters resistivity (ρ1) and thickness (h1) for the three-layered
synthetic MT data have been taken to depict the global solu-
tion using presented algorithm. Here we prepared the cross-
plots of ρ1 versus h1 using (a) wPSOGSA, (b) PSO, and
(c) GSA, showing all accepted models (red circle), selected
models with a misfit error of less than a threshold error of
10−4 (magenta circle), models of a PDF greater than 95 %
(blue circle), models of a PDF greater than 75 % (green cir-
cle), models of a PDF greater than 68.27 % (yellow circle),
and mean models, i.e., model parameters which have a PDF
greater than 68.27 % (black asterisk), as shown in Fig. 7. It
is noticed that all inverted results give the global solution,
which has a good agreement with the true model, whereas
wPSOGSA gives more accurate results than the other two
algorithms, PSO and GSA, as shown in Table 2.

3.1.2 Sensitivity, correlation matrix, and model
parameters

The accepted models, which have a posterior PDF value
within 68.27 % CI, are used to calculate the correlation ma-
trix. This correlation matrix gives the relationship among
model parameters. Thus, the lower correlation value gives
weak relation among the parameters and vice versa. The cor-
relation matrix of PSO, GSA, and wPSOGSA was examined
on one set of synthetic data, as shown in Figs. 8, 9, and 10,
demonstrating the sensitivity among inverted model param-
eters. The value of correlation matrix, 1.0, indicates that the
two parameters are strongly correlated.

Figure 8 shows that first-layer resistivity is correlated
highly positively with a first-layer thickness (0.97) and
second-layer thickness (0.98), while the second-layer resis-
tivity (−0.99) and third-layer resistivity (−0.81) are sub-
stantially negative connected. Second-layer resistivity is cor-
related with the third-layer resistivity (0.87), which has a
significant positive relationship, while second-layer resistiv-
ity has a significant negative correlation with the first-layer
thickness (−0.99) and the second-layer thickness (−1.00).
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Table 1. True model, search range, and inverted layer parameters by wPSOGSA, GSA, and PSO using different amounts of noisy (0 %,
10 %, and 20 %) synthetic MT apparent resistivity and apparent phase datasets for a three-layer Earth model.

Layer parameters ρ1 (�m) ρ2 (�m) ρ3 (�m) h1 (m) h2 (m)

True model 30 000 5000 1000 15 000 18 000

Search range 5000–50 000 1000–10 000 50–5000 5000–25 000 10 000–25 000

Shaw and Srivastava (2007) PSO 26 981.80 6230.30 1011.70 13 090 19 720
2.0 % Gaussian random noise GA 40 800 10 000 1010 6210 25 000

RR 43 424.40 3097.10 980.70 17 010.00 16 960.00

0 % noisy data PSO 27 463.86 4664.57 999.48 16 112.66 17 080.01
GSA 32 017.78 4721.69 1004.05 16 195.26 17 928.07
wPSOGSA 30 243.42 5007.04 1000.02 14 969.33 18 029.76

10 % noisy data PSO 19 861.54 7659.73 1022.19 15971.66 14774.31
GSA 27 538.91 6534.61 1018.04 14 117.82 17 408.14
wPSOGSA 27 589.85 6043.87 998.99 14 902.89 18 221.87

20 % noisy data PSO 26 981.8 6230.3 1011.7 13 090.00 19 720.00
GSA 28 823.57 5825.19 1089.65 16 861.84 20 795.48
wPSOGSA 29 208.75 5282.77 1055.09 16 573.22 18 398.94

Figure 6. Histogram of selected models for misfit error below a defined threshold error of wPSOGSA.

First-layer thickness (−0.92) and second-layer thickness
(−0.90) are very negatively associated with third-layer resis-
tivity, while first-layer thickness is extremely positively cor-
related with second-layer thickness (0.99).

Figure 9 indicates that first-layer resistivity is highly
associated with second-layer thickness (1.00) and weakly
with second-layer resistivity (−1.00), third-layer resistivity
(−1.00), and first-layer thickness (−1.00). Second-layer re-
sistivity (−1) is highly linked with a second-layer thickness
(−1.00), while third-layer resistivity (1.00) and first-layer
thickness are strongly correlated (1.00). Third-layer resistiv-
ity has a highly positive correlation with first-layer thick-
ness (1.00) and a strong negative correlation with second-
layer thickness (−1.00), whereas first-layer thickness has a

significant negative correlation with second-layer thickness
(−1.00).

Figure 10 shows the correlation matrix of wPSOGSA.
The analyses reveal that the first-layer resistivity is strongly
negative with the second-layer resistivity, substantially neg-
ative (−0.92) with the third-layer resistivity, weakly posi-
tive (0.30) with the first-layer thickness, and considerably
(0.63) with the second-layer thickness. Second-layer resis-
tivity is slightly positive (0.31) when compared to third-layer
resistivity (0.43) but substantially negative when compared
to first-layer thickness. Third-layer resistivity has a slightly
negative correlation (−0.23) with first-layer thickness but a
moderately negative correlation (−0.71) with second-layer
thickness, and first-layer thickness has a negative correlation
(−0.71). Thus, the conclusion can be made that the layer
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Figure 7. Cross-plots of thickness and resistivity of first layer for
the three-layered synthetic resistivity model using (a) wPSOGSA,
(b) PSO, and (c) GSA, displaying all accepted models (red circle),
selected models with misfit error less than a threshold error (ma-
genta circle), models with a PDF > 95 % CI (blue circle), models
with a PDF> 75 % CI (green circle), models with a PDF> 68.27 %
CI (yellow circle), and the mean model, i.e., model parameters
which have a PDF > 68.27 % (black asterisk).

Figure 8. Correlation matrix calculated from the PSO inverted
model using three-layer noise-free synthetic MT apparent resistivity
and apparent phase data.

parameters are independent of others, so changing one will
have no effect on the other, compared to the result obtained
via PSO and GSA.

3.1.3 Stability analysis

We used two different search ranges for stability evaluation
of the proposed wPSOGSA and executed the algorithms over
three layers of synthetic MT data, one of which is expanded,

Figure 9. Correlation matrix calculated from the GSA inverted
model using three-layer noise-free synthetic MT apparent resistivity
and apparent phase data.

Figure 10. Correlation matrix calculated from the wPSOGSA in-
verted model using three-layer noise-free synthetic MT apparent re-
sistivity and apparent phase data.

and the other is contracted by 10 % of the initial search range.
We infer from three layers of synthetic data that results fluc-
tuate by approximately 3 % from the true value when the
search range is changed. This variation is about 10 % on av-
erage for synthetic data corrupted with 30 % random noise,
as shown in Table 2.

Nonlin. Processes Geophys., 30, 435–456, 2023 https://doi.org/10.5194/npg-30-435-2023



M. Mukesh et al.: Joint application of metaheuristic algorithm and Bayesian Statistics approach 445

Table 2. Stability analysis of a hybrid algorithm for three layers of synthetic data.

Layer parameters ρ1 (�m) ρ2 (�m) ρ3(�m) h1 (m) h2 (m)

Search range 5000–50 000 1000–10 000 50–5000 5000–25 000 10 000–25 000

Search range – Case 1 4500–55 000 900–11 000 45–5500 4500–27 500 9000–27 500

wPSOGSA inverted model
0 % 31 092.47 5085.79 1000.14 14 700.83 18 251.85
30 % 30 113.82 5016.75 1137.05 15 880.95 23 970.22

Search range – Case 2 5500–45 000 1100–9000 55–4500 5500–22 500 11 000–22 500

wPSOGSA inverted model
0 % 29 078.26 4922.85 999.91 15 273.25 17 767.45
30 % 27 815.97 5464.88 1156.46 17 398.41 18 119.61

3.2 Application to synthetic MT data – four-layer case

For the second example of the synthetic data, a typical four-
layer HK-type of Earth model to analyze the performance
of the present algorithm with improved differential evolution
(IDE) results obtained by Xiong et al. (2018). Analysis over
noisy synthetic data is done by corrupting synthetic data with
10 % and 20 % Gaussian random noise to mimic the real field
data because different types of noises influence apparent re-
sistivity data. Following that, all three optimization methods
are run using the noisy synthetic data. As the misfit error
increases with the noise in the data, the Bayesian PDF of
68.27 % CI is calculated with respect to the threshold misfit
error of 0.01, and thus the mean model is calculated.

Enormous uncertainty is shown in the inverted results;
hence, we calculated the mean model for 68.27 % CI using
the posterior Bayesian PDF to reduce the uncertainty and
produce the global best solution. The optimized results ob-
tained from the posterior PDF and the true model are shown
in Table 3. Figure 11 illustrates that the inverted responses for
PSO, GSA, and wPSOGSA are well-fitting as follows (a) ob-
served and calculated apparent resistivity data, (b) observed
and calculated apparent phase data, (c) 1-D depth model, and
(d) convergence response of present algorithms. We have es-
timated the layer parameters for synthetic data corrupted with
20 % random noise for comparative analysis and found that
PSO, GSA, and wPSOGSA converge at iterations 96, 556,
and 187, with associated errors of 3.69, 4.04, and 3.69, re-
spectively.

Additionally, the synthetic data corrupted with 10 % ran-
dom noise are also used for the execution of inversion, keep-
ing the search range, a number of particles, and iterations
the same as before; it was observed that PSO, GSA, and
wPSOGSA converge at iterations 151, 2, and 250, with as-
sociated errors of 1.7609, 1.95, and 1.76, respectively. The
posterior Bayesian PDF for threshold data with 68.27 % CI
is calculated similarly to a three-layer case to minimize the
uncertainty in inverted results.

Stability analysis

For the stability evaluation of presented algorithms over four
layers of synthetic MT data, similar to the three-layer case,
we used two different search ranges and executed the algo-
rithms for 1000 iterations. The method exhibits good results
with four layers of synthetic data and reveals minimal varia-
tion for noise-free data. For 30 % contaminated data, the vari-
ation is approximately 10 % and 12 % in Case 1 and Case 2,
respectively. The outputs do not change much across runs
and provide consistent results, as shown in Table 4.

3.3 Application to field MT data – island of Milos,
Greece

In one-dimensional MT data for site G5 near borehole M2
(Hutton et al., 1989), as shown in Fig. 12, the apparent resis-
tivity and phase values are inverted using wPSOGSA, PSO,
and GSA, keeping the same set of controlling parameters
as for noisy synthetic data, such as the swarm size, inertia
weight (w), personal learning coefficient (c1), global learning
coefficient (c2), descending coefficient (α), and initial value
of the universal gravitational constant (G0).

Figure 13 shows the calculated data and model parame-
ters as (a) a match between observed and computed appar-
ent resistivity data and (b) a match between observed and
computed apparent phase data; (c) the 1D inverted model;
and (d) the convergence response of wPSOGSA (red color),
GSA (green color), and PSO (blue color), along with the true
model (black color). Figure 13c depicts alluvium deposits
with a resistivity of 1.0�m with 15 m thickness as the top
layer, and volcanic deposits with a resistivity of 300�m and
10 m thickness lie beneath the alluvium deposits. A very high
conducting layer of resistivity less than 1.0�m is estimated,
equivalent to the green lahar under the high resistivity vol-
canic deposits. The next layer below, with higher resistivity,
corresponds to the crystalline foundation. In the geothermal
zone’s depths, the resistivity drops again. The resistivity in
the depth range of about 1000 m, which is similar to earlier
studies, was explored, and the findings of the proposed al-
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Figure 11. The inverted MT response by PSO (blue color), GSA (green color), and hybrid wPSOGSA (red color) with a true model (black
color) over four-layer synthetic data as shown in (a) the observed and calculated apparent resistivity curve, (b) the observed and calculated
apparent phase curve, (c) the 1D depth inverted model, and (d) the convergence curve.

Table 3. Comparison of the result obtained from improved differential evolution (IDE) and inverted results of PSO, GSA, and hybrid
wPSOGSA obtained using the posterior PDF for four-layer synthetic apparent resistivity data with different Gauss noise levels (0 %, 10 %,
and 20 %) and the true model.

Layer parameters ρ1 ρ2 ρ3 ρ4 h1 h2 h3
(�m) (�m) (�m) (�m) (m) (m) (m)

True model 30.00 200.00 10.00 100.00 100.00 2000.00 3000.00

Search range 25–35 100–250 5–15 50–150 50–200 1000–3000 2000–3500

0 % noise IDE 30.00 200.00 9.99 100.01 100.00 1991.98 3000.24
PSO 30.00 200.001 10.00 100.00 100.00 2000.00 3000.00
GSA 29.95 199.79 9.99 99.99 99.67 2000.70 2995.37
wPSOGSA 30.00 200.00 10.00 100.00 100.00 2000.00 3000.00

10 % noise IDE 30.24 210.28 08.92 99.67 109.83 1994.63 2667.13
PSO 32.86 224.99 11.51 107.65 109.71 1971.78 3499.92
GSA 29.77 209.78 9.50 106.78 92.38 2073.14 2754.77
wPSOGSA 30.46 197.18 9.97 102.01 100.50 1974.83 3079.35

20 % noise IDE 30.30 212.41 11.44 97.92 102.40 1930.17 3347.24
PSO 34.99 247.04 11.80 114.56 115.16 1986.08 3499.99
GSA 29.52 225.61 9.74 113.46 87.55 2081.26 2753.29
wPSOGSA 34.88 246.08 11.75 114.54 114.58 1990.98 3489.10

gorithm were discovered to be in good agreement with the
model developed by Dawes in Hutton et al. (1989).

Figure 13d reveals that the algorithms converge at itera-
tions 218, 1, and 425, with corresponding errors of 0.0494,
0.0518, and 0.0493 for PSO, GSA, and wPSOGSA, respec-

tively. The hybrid algorithm has the least error between ob-
served and computed data. The algorithms are executed for
1000 iterations and 10 000 models, and findings are com-
pared with available stratigraphy. The result is derived us-
ing the Monte Carlo technique by Hutton et al. (1989). After
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Table 4. Stability analysis of a hybrid algorithm for four layers of MT synthetic data.

Layer parameters ρ1 (�m) ρ2 (�m) ρ3 (�m) ρ4 (�m) h1 (m) h2 (m) h3 (m)

Search range 25–35 100–250 5–15 50–150 50–200 1000–3000 2000–35 000

Search range – Case 1 27.50–31.50 110–225 5.50–13.50 55–135 55–180 1100–2700 2200–3150

wPSOGSA inverted model
0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00
30 % 31.5 220.79 11.17 109.18 99.48 2150.07 3150

Search range – Case 2 22.50–38.50 90–275 4.50–16.50 45–165 45–220 900–3300 1800–3850

wPSOGSA inverted model
0 % 29.99 199.99 10.00 99.99 99.99 1999.99 3000.00
30 % 35.47 264.27 11.95 103.13 116.22 2020.37 3040.95

Figure 12. The location of the MT site and geology of the island of Milos, Greece (after Stewart and McPhie, 2006).

examining our optimized effects from Fig. 13 and Table 5,
hybrid wPSOGSA outperformed PSO and GSA.

3.3.1 Bayesian analysis and uncertainty in model
parameters

A posterior Bayesian method determines the global model
and related uncertainty. Figure 14 shows another uncertainty
study that examined the six-layered resistivity model over
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Figure 13. The inverted MT response by PSO (blue color), GSA (green color), and hybrid wPSOGSA (red color) with a true model (black
color) over the geothermal area, island of Milos, Greece, as shown in (a) the observed and calculated apparent resistivity curve, (b) the
observed and calculated apparent phase curve, (c) the 1D depth inverted model, and (d) the convergence curve.

the geothermal field, island of Milos, Greece, and found that
the peak values of the posterior PDF for all model param-
eters are much closer to the actual value of the layer pa-
rameters, providing less uncertainty. We have analyzed the
wPSOGSA inverted results from Fig. 14 and Table 5 and
found that the first, second, third, fourth, fifth, and sixth lay-
ers’ resistivity with uncertainty in associated layer parame-
ters is 1.23±0.49, 297.61±53.43, 0.55±0.02, 2.41±0.16,
14.18±1.76, and 99.92±0.37�m. Similarly, the associated
thicknesses with uncertainty are 14.51± 1.35, 9.85± 1.35,
127.39±6.01, 823.01±7.57, and 2750.88±63.07 m. Thus,
the analysis suggests the lower uncertainties in each layer’s
parameters except resistivity of the first and second layers.

Table 5 compares optimized results obtained from all three
presented algorithms based on the posterior Bayesian PDF
under 68.27 % CI condition. However, the 1D depth model
inverted from wPSOGSA shows good agreement with the
available borehole M-2 (Hutton et al., 1989). As a result, the
hybrid algorithm is functioning better, and the findings are
encouraging.

3.3.2 Sensitivity, correlation matrix, and model
parameters

Here, a similar study of the correlation matrix is carried out
for field example from the island of Milos, Greece, using all
accepted models, which have posterior PDF values within
68.27 % CI. The correlation matrix of PSO, GSA, and wP-
SOGSA was examined over the field MT data as shown in

Figs. 15, 16, and 17, demonstrating the sensitivity among in-
verted model parameters, and found an almost similar cor-
relation among the layer parameters for three-layer synthetic
study. From correlation analyses, we noticed that the values
are showing moderate and weak correlation among param-
eters in the wPSOGSA case, indicating that wPSOGSA is
linearly independent of layer parameters. This indicates that
the parameter is less affected by other layer parameters and
resistivity curves, whereas the correlation among layer pa-
rameters for field data using GSA and PSO is either strongly
positive or strongly negative, which shows that the parame-
ters are dependent on each other. Thus a change in one pa-
rameter affects the other, and the apparent resistivity curve is
also very much involved.

3.4 Application to field MT data – Newcastleton,
Southern Uplands, Scotland

Another field example of MT data was picked to illustrate
our technique from Newcastleton (55.196◦ N, 2.796◦W, in
geographic coordinates), Southern Uplands of Scotland. The
Southern Uplands are isolated from the Midland Valley by
the Southern Uplands fault. The location of the MT site and
the geology of the study area are shown in Fig. 18.

During 9 d, in the frequency range of 0.1 to 0.0001 Hz, the
variations of the magnetic and telluric fields concerning the
time at four sites along a line perpendicular to the anomaly’s
strike were recorded, keeping a high signal-to-noise ratio,
where the anisotropy ratios were very near to 1, and the skew
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Figure 14. The posterior Bayesian probability density function (PDF) with 68.27 % CI for wPSOGSA over a geothermal field, island of
Milos, Greece.

Table 5. Search range and inverted results by the posterior PDF (68.27 % CI) and PSO, GSA, and hybrid wPSOGSA for six-layered field
data.

Layer parameters ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 h1 h2 h3 h4 h5
(�m) (�m) (�m) (�m) (�m) (�m) (m) (m) (m) (m) (m)

Search range 0.1–5 50–500 0.1–5 1–10 10–30 50–100 10–20 5–15 110–150 800–850 2500–3000

Mean posterior PSO 1.71 493.81 0.62 2.82 13.22 99.97 10.39 7.44 135.4 843.77 2861.35
GSA 2.28 299.28 0.54 2.76 18.25 76.03 14.08 8.81 130.75 825.32 2753.07
wPSOGSA 1.23 297.61 0.55 2.41 14.18 99.92 14.51 9.85 127.39 823.01 2750.88

factor is less than 0.1 for the majority of periods. Due to low
anisotropy ratios and the skew factor, the resistivity distribu-
tion under this location is one-dimensional (Jones and Hut-
ton, 1979). Here one set of MT data is inverted using PSO,
GSA, and wPSOGSA to obtain the best fitting apparent re-
sistivity curve, apparent phase curve, and 1D depth model,
as shown in Fig. 19a, b, and c, respectively. Figure 19 shows
a realistic one-dimensional resistivity variation, with a phase
response ranging from 60◦ at 100 s to 35◦ at 1000 s, which
can only be obtained by establishing a conducting zone at
lower crustal–upper mantle levels (Jones and Hutton, 1979).

The execution time for wPSOGSA (33 s) is the lowest as
compared to GSA (34 s) and PSO (53 s). The convergence it-
erations of PSO, GSA, and wPSOGSA are 79, 101, and 65,
and its associated misfit errors are 3.79, 4.72, and 3.70, re-
spectively.

The inverted MT model is illustrated in Fig. 19c, which de-
picts two low conductive zones at a depth of 21 and 400 km.
The first conductive layer (70�m) with a thickness of 28 km
is underlain by a high resistive top layer of thickness of

21 km, and the second very high conductive layer (less than
1.0�m) at a depth of 400 km is underlain by a high resistive
layer (550�m) of thickness 351 km. Thus, the last layer of a
very high conductive zone (i.e., resistivity less than 1.0�m)
as a lower crust–upper mantle conductor at a depth of 400 km
is estimated. At 400 m depths, a conducting zone meets both
the amplitude and phase long period responses. This expla-
nation is directly equivalent to accepted models derived from
Monte Carlo models for the structure underlying the South-
ern Uplands.

4 Discussions

The analysis on the two synthetic MT datasets shows that
the proposed algorithm works very well and provides encour-
aging well-fitted calculated apparent resistivity and apparent
phase data with the associated observed data. Also from the
study, it is noted that the proposed algorithm is less sensitive
to the search range and the constraints used in this algorithm.
And the comparison of the model parameters shows that the
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Figure 15. Correlation matrix of field data taken from the geothermally rich area of the island of Milos, Greece, for PSO.

Table 6. Search range, inverted results by the posterior PDF (68.27 % CI) using PSO, GSA, and wPSOGSA for field data.

Layer parameters ρ1 (�m) ρ2 (�m) ρ3 (�m) ρ4 (�m) h1 (m) h2 (m) h3 (m)

Search range 300–1000 10–150 250–1500 0.1–5 10 000–30 000 15 000–35 000 100 000–450 000

Mean posterior PSO 304.47 92.66 591.52 4.93 20 894.01 34 776.15 379 563.48
GSA 507.65 69.38 548.46 2.66 20 493.18 24 182.99 382 090.23
wPSOGSA 444.27 78.94 554.53 1.91 20 591.39 28 177.40 382 181.50

Jones and Hutton (1979) Monte Carlo inversion 500.00 70.00 750.00 1.00 22 000.00 28 000.00 350 000.00

output from the proposed algorithm is very precise in com-
parison to the true model and faster than the individual algo-
rithms and the other algorithms used in the previous papers.

A research study conducted by Hutton et al. (1989) com-
pared various techniques, including Parker H+, Dawes (a
combined Monte Carlo–Hedgehog approach developed by
Dawes), Jupp–Vozoff, Fischer, and Parker D+ inversions,

to interpret the subsurface geology of the island of Mi-
los, Greece. Among these techniques, the Dawes algorithm
proved to be the most effective in identifying a reservoir in-
terface at the borehole’s depth. Consequently, these methods
were utilized to compile 1-D models along several traverses.
All three models, Parker H+, Parker D+, and Dawes, indicate
the presence of a resistivity boundary at a depth of approx-
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Figure 16. Correlation matrix of field data taken from the geothermally rich area of the island of Milos, Greece, for GSA.

Table 7. Inverted results by the Dawes method, Jupp–Vozoff method, the Fischer inversion method (resistivity in �m), and Parker D+
inversion.

Layer The Dawes The Jupp– The Fischer Parker D+ Layer The Dawes The Jupp– The Fischer Parker
parameters method – a hybrid Vozoff inversion conductance parameters method – a hybrid Vozoff inversion D+

Monte Carlo method (Siemens) Monte Carlo method

ρ1 (�m) 20.25875 14.600889 10.217801 46.00 h1 (m) 12.98136 13.1712586 12.580575 34.00
ρ2 (�m) 0.510194 0.51276562 0.5135027 65.00 h2 (m) 136.2889 136.313007 21.962187 64.20
ρ3 (�m) 3.663892 4.4639495 0.6283345 70.00 h3 (m) 1298.206 1670.17267 103.19952 198.77
ρ4 (�m) 35.83218 202.73303 3.7222432 172.00 h4 (m) 12 846.85 1705.7833 31.24917 737.04
ρ5 (�m) 69.23081 28.907505 6.6645056 177.00 h5 (m) – 9777.8286 68.60352 1062.35
ρ6 (�m) – 93.942774 3.6770724 h6 (m) – – 1485.8284
ρ7 (�m) – – 19.826915 h7 (m) – – 5607.5719
ρ8 (�m) – – 33.372876 – – –
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Figure 17. Correlation matrix of field data taken from the geothermally rich area of the island of Milos, Greece, for hybrid wPSOGSA.

imately 1000 m (Hutton et al., 1989), where the geothermal
reservoir has been detected. The research findings through
the proposed algorithm reveal that the resistivity of the crys-
talline basement beneath the geothermal site is abnormally
low (< 20�m) in the uppermost portion and remains below
50�m at depths of at least 10 km.

Figure 19c presents the inverted MT model of the South-
ern Uplands, Scotland, displaying two zones of low conduc-
tivity at depths of 21 and 400 km. Contrary to the findings
of Jain and Wilson (1967), there is strong evidence suggest-
ing that the conducting zone (70�m) beneath the South-
ern Uplands exists at a depth exceeding 20 km. Furthermore,

there is a second layer of extremely high conductivity (rep-
resenting lower crust–upper mantle of less than 1.0�m) at
a depth of 400 km, which is underlain by a highly resis-
tive layer (550�m) spanning a thickness of 351 km. At a
depth of 400 m, this conducting zone shows a direct align-
ment with both the amplitude and phase responses of long
period measurements, which can be noticed in the model de-
rived from Monte Carlo simulations of the structure under-
lying the Southern Uplands (see Fig. 19). The results from
the proposed algorithm as well as from PSO and GSA (see
Fig. 19) demonstrate the presence of a highly conductive
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Figure 18. The location of the MT site and the geology of the Southern Uplands, Scotland (after Leslie et al., 2015).

layer at depths exceeding 20 and 400 km, corroborating the
findings of Jones and Hutton (1979).

5 Conclusions

The study presented wPSOGSA along with PSO and GSA
and evaluated their efficacy and applicability to the MT data.
These algorithms narrate the appraisal of 1D resistivity mod-
els from apparent resistivity, apparent phase, and frequency
datasets. So, synthetic and field MT data from various ge-
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Figure 19. The inverted MT response by PSO (blue color), GSA (green color), and hybrid wPSOGSA (red color) with a true model (black
color) over Newcastleton, southern Scotland, as shown in (a) the observed and calculated apparent resistivity curve, (b) the observed and
calculated apparent phase curve, (c) the 1D depth inverted model, and (d) the convergence curve.

ological terrains were used to demonstrate the relevance of
these methods, which are further carried out by applying
multiple runs, generating a large number of models that fit
the apparent resistivity and apparent phase curves. Further-
more, these best-fitting models within a specified range are
then chosen for statistical analysis. The statistical analysis
includes the posterior PDF based on the Bayesian approach
with a 68.27 % CI, the correlation matrix, and stability analy-
sis in order to understand the accuracy of the mean model and
its uncertainty. However, the solution from the posterior PDF
based on the Bayesian of wPSOGSA is better than GSA and
PSO, explaining the reliability of the proposed inversion al-
gorithm. In general, conventional techniques can effectively
resolve the model in random noise, but they can miscarry
in methodical error or inappropriate models. Also, the per-
formance of the proposed algorithms on field datasets has
been analyzed based on the mean model, uncertainty, corre-
lation, and stability of layered Earth models, and it was found
that the results obtained from wPSOGSA are reliable, stable,
and more accurate than the available results, which are well
adapted to borehole lithology.

Data availability. The datasets used for the present study and anal-
ysis have been taken from published papers, e.g. Shaw and Srivas-
tava (2007), Xiong et al. (2018), Hutton et al. (1989), Jones and
Hutton (1979).

Author contributions. M: conceptualization of the study,
methodology, computer code, analysis, and drafting of the
manuscript. KS: methodology, computer code, analysis, and
drafting of the manuscript. UKS: supervision, suggestions, and
editing.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors would like to express their
gratitude to the IIT(ISM), Dhanbad, for providing a pleasant en-
vironment to pursue this study and support for the research. We
also express our gratitude to the chief editor, associate editor, and
anonymous reviewers, whose suggestions and comments enabled
us to better understand the issues and considerably improve our
manuscript.

Review statement. This paper was edited by Norbert Marwan
and reviewed by two anonymous referees.

Nonlin. Processes Geophys., 30, 435–456, 2023 https://doi.org/10.5194/npg-30-435-2023



M. Mukesh et al.: Joint application of metaheuristic algorithm and Bayesian Statistics approach 455

References

Ai, H., Essa, K. S., Ekinci, Y. L., Balkaya, Ç., Li, H., and
Géraud, Y.: Magnetic anomaly inversion through the novel bar-
nacles mating optimization algorithm, Sci. Rep., 12, 22578,
https://doi.org/10.1038/s41598-022-26265-0, 2022.

Cagniard, L.: Basic theory of the magneto-telluric method
of geophysical prospecting, Geophysics, 18, 605—635,
https://doi.org/10.1190/1.1437915, 1953.

Colorni, A., Dorigo, M., and Maniezzo, V.: Distributed Optimiza-
tion by Ant Colonies, Proceedings of the First European Confer-
ence on Artificial Life, Paris, France, 134–142 pp., 1991.

Constable, S. C., Parker, R. L., and Constable, C. G.: Occam’s
inversion: A practical algorithm for generating smooth models
from electromagnetic sounding data, Geophysics, 52, 289–300,
https://doi.org/10.1190/1.1442303, 1987.

Dawes, G. J. K.: Magnetotelluric feasibility study: Island of Mi-
los, Greece, Luxembourg, Edinburgh Univ. (UK). Dept. of Geo-
physics, Luxembourg, Report Number EUR-10674, Reference
Number: ERA-13-007410, EDB-88-008365, 1986.

Dosso, S. E. and Oldenburg, D. W.: Magnetotelluric appraisal
using simulated annealing, Geophys. J. Int., 106, 379–385,
https://doi.org/10.1111/j.1365-246X.1991.tb03899.x, 1991.

Essa, K. S. and Diab, Z. E.: Gravity data inversion
applying a metaheuristic Bat algorithm for various
ore and mineral models, J. Geodyn., 155, 101953,
https://doi.org/10.1016/j.jog.2022.101953, 2023.

Essa, K. S., Abo-Ezz, E. R., Géraud, Y., and Diraison, M.: A suc-
cessful inversion of magnetic anomalies related to 2D dyke-
models by a particle swarm scheme, J. Earth Syst. Sci., 132, 65,
https://doi.org/10.1007/s12040-023-02075-4, 2023.

Hutton, V. R. S., Galanopoulos, D., Dawes, G. J. K., and
Pickup, G. E.: A high resolution magnetotelluric survey of
the Milos geothermal prospect, Geothermics, 18, 521–532,
https://doi.org/10.1016/0375-6505(89)90054-0, 1989.

Jain, S. and Wilson, C. D. V.: Magneto-Telluric Investigations in the
Irish Sea and Southern Scotland, Geophys. J. Int., 12, 165–180,
https://doi.org/10.1111/j.1365-246X.1967.tb03113.x, 1967.

Jones, A. G. and Hutton, R.: A multi-station magnetotelluric study
in southern Scotland – I. Fieldwork, data analysis and results,
Geophys. J. Int., 56, 329–349, https://doi.org/10.1111/j.1365-
246X.1979.tb00168.x, 1979.

Kennedy, J. and Eberhart, R.: Particle swarm optimiza-
tion, in: Proceedings of ICNN’95 – International
Conference on Neural Networks, 1942–1948 vol.4,
https://doi.org/10.1109/ICNN.1995.488968, 1995.

Khishe, M. and Mosavi, M. R.: Chimp optimiza-
tion algorithm, Expert Syst. Appl., 149, 113338,
https://doi.org/10.1016/j.eswa.2020.113338, 2020.

Kirkpatrick, S., Gelatt C., D., and Vecchi M. P.: Opti-
mization by Simulated Annealing, Science, 220, 671–680,
https://doi.org/10.1126/science.220.4598.671, 1983.

Kunche, P., Sasi Bhushan Rao, G., Reddy, K. V. V. S., and Uma
Maheswari, R.: A new approach to dual channel speech enhance-
ment based on hybrid PSOGSA, Int. J. Speech Technol., 18, 45–
56, https://doi.org/10.1007/s10772-014-9245-5, 2015.

Leslie, A. G., Millward, D., Pharaoh, T., Monaghan, A.
A., Arsenikos, S., and Quinn, M.: Tectonic synthesis
and contextual setting for the Central North Sea and

adjacent onshore areas, 21CXRM Palaeozoic Project,
https://nora.nerc.ac.uk/id/eprint/516757/1/21CXRM_Tectonic_
synthesis_Leslieetal_CR_15_125N_Finalv2.pdf (last access:
24 March 2016), 2015.

Li, S.-Y., Wang, S.-M., Wang, P.-F., Su, X.-L., Zhang, X.-S., and
Dong, Z.-H.: An improved grey wolf optimizer algorithm for
the inversion of geoelectrical data, Acta Geophys., 66, 607–621,
https://doi.org/10.1007/s11600-018-0148-8, 2018.

Lynch, S. M.: Introduction to applied Bayesian statistics
and estimation for social scientists, Springer, New York,
https://doi.org/10.1007/978-0-387-71265-9, 2007.

Miecznik, J., Wojdyła, M., and Danek, T.: Application of nonlinear
methods to inversion of 1D magnetotelluric sounding data based
on very fast simulated annealing, Acta Geophys. Pol., 51, 307–
322, 2003.

Mirjalili, S. and Hashim, S. Z. M.: A new hybrid PSOGSA al-
gorithm for function optimization, in: 2010 International Con-
ference on Computer and Information Application, 374–377,
https://doi.org/10.1109/ICCIA.2010.6141614, 2010.

Mirjalili, S., Mirjalili, S. M., and Lewis, A.: Grey
Wolf Optimizer, Adv. Eng. Softw., 69, 46–61,
https://doi.org/10.1016/j.advengsoft.2013.12.007, 2014.

Nabighian, M. N. and Asten, M. W.: Metalliferous mining geo-
physics – State of the art in the last decade of the 20th century
and the beginning of the new millennium, Geophysics, 67, 964–
978, https://doi.org/10.1190/1.1484538, 2002.

Pace, F., Raftogianni, A., and Godio, A.: A Comparative Analysis of
Three Computational-Intelligence Metaheuristic Methods for the
Optimization of TDEM Data, Pure Appl. Geophys., 179, 3727–
3749, https://doi.org/10.1007/s00024-022-03166-x, 2022.

Pérez-Flores, M. A. and Schultz, A.: Application of 2-D
inversion with genetic algorithms to magnetotelluric data
from geothermal areas, Earth Planets Space, 54, 607–616,
https://doi.org/10.1186/BF03353049, 2002.

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S.: GSA: A
Gravitational Search Algorithm, Inf. Sci., 179, 2232–2248,
https://doi.org/10.1016/j.ins.2009.03.004, 2009.

Rodi, W. and Mackie, R. L.: Nonlinear conjugate gradients algo-
rithm for 2-D magnetotelluric inversion, Geophysics, 66, 174–
187, https://doi.org/10.1190/1.1444893, 2001.

Ross, S.: Probability and statistics for engi-
neers and scientists, Elsevier, New Delhi,
https://www.sciencedirect.com/book/9780123704832/introduction-
to-probability-and-statistics-for-engineers-and-scientists (last
access: 2014), 2009.

Roy, A. and Kumar, T. S.: Gravity inversion of 2D fault having vari-
able density contrast using particle swarm optimization, Geo-
phys. Prospect., 69, 1358–1374, https://doi.org/10.1111/1365-
2478.13094, 2021.

Sen, M. K. and Stoffa, P. L.: Bayesian inference, Gibbs’ sam-
pler and uncertainty estimation in geophysical inversion1, Geo-
phys. Prospect., 44, 313–350, https://doi.org/10.1111/j.1365-
2478.1996.tb00152.x, 1996.

Sen, M. K. and Stoffa, P. L.: Global Optimization Methods in
Geophysical Inversion, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511997570, 2013.

Sęnel, F. A., Gökçe, F., Yüksel, A. S., and Yiğit, T.: A novel hybrid
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