Articles | Volume 28, issue 3
https://doi.org/10.5194/npg-28-423-2021
https://doi.org/10.5194/npg-28-423-2021
Research article
 | 
10 Sep 2021
Research article |  | 10 Sep 2021

Enhancing geophysical flow machine learning performance via scale separation

Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard

Related authors

CYCLOPs: a Unified Framework for Surface Flux-Driven Cyclones Outside the Tropics
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025,https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
ClimarisQ: What can we learn by playing a serious game for climate education?
Davide Faranda, Lucas Taligrot, Pascal Yiou, and Nada Caud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2222,https://doi.org/10.5194/egusphere-2025-2222, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Attributing the occurrence and intensity of extreme events with the flow analogue method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025,https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Understanding concurrent heatwaves from a meridional heat transport perspective
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189,https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Anthropogenic climate change has increased severity of mid-latitude storms and impacted airport operations
Lia Rapella, Tommaso Alberti, Davide Faranda, and Philippe Drobinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1219,https://doi.org/10.5194/egusphere-2025-1219, 2025
Short summary

Cited articles

Bassett, D. and Sporns, O.: Network neuroscience, Nat. Neurosci., 20, 353–364, https://doi.org/10.1038/nn.4502, 2017. a
Berkson, J.: Minimum Chi-Square, not Maximum Likelihood!, Ann. Statist., 8, 457–487, https://doi.org/10.1214/aos/1176345003, 1980. a
Bolton, T. and Zanna, L.: Applications of deep learning to ocean data inference and subgrid parameterization, J. Adv. Model. Earth Sy., 11, 376–399, 2019. a
Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8, 3–62, 1936. a
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a
Download
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Share