Articles | Volume 28, issue 3
https://doi.org/10.5194/npg-28-423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-28-423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing geophysical flow machine learning performance via scale separation
Davide Faranda
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
London Mathematical Laboratory, 8 Margravine Gardens, London, W68RH, UK
LMD/IPSL, Ecole Normale Superieure, PSL research University, Paris, France
Mathieu Vrac
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Pascal Yiou
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Flavio Maria Emanuele Pons
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Adnane Hamid
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Giulia Carella
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Cedric Ngoungue Langue
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Soulivanh Thao
Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, France
Valerie Gautard
DRF/IRFU/DEDIP//LILAS
Departement d'Electronique des Detecteurs et d'Informatique pour la Physique, CE Saclay l'Orme des Merisiers, 91191 Gif-sur-Yvette, France.
Related authors
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025, https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
Short summary
Storms strongly resembling hurricanes are sometimes observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become much colder locally than the underlying ocean, creating the conditions for hurricanes to form but only over small areas and for short times. We call the resulting storms "CYCLOPs".
Davide Faranda, Lucas Taligrot, Pascal Yiou, and Nada Caud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2222, https://doi.org/10.5194/egusphere-2025-2222, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
We developed a free online game called ClimarisQ to help people better understand climate change and extreme weather. By playing the game, users learn how decisions about the environment, money, and public opinion affect future risks. We studied how players reacted and found that the game makes climate issues easier to grasp and encourages discussion. This shows that interactive tools like games can support learning and action on climate and environmental challenges.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025, https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Short summary
Properties of extreme meteorological and climatological events are changing under human-caused climate change. Extreme event attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogue method, which compares the observed event to similar events in the past.
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189, https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Short summary
Hemispheric heatwaves have fundamental implications for ecosystems and societies. They are studied together with the large-scale atmospheric dynamics, through the lens of the poleward heat transports by planetary-scale waves. Extremely weak transports of heat towards the Poles are found to be associated with hemispheric heatwaves in the Northern Hemisphere mid-latitudes. Therefore, we conclude that heat transports are a clear indicator, and possibly a precursor of hemispehric heatwaves.
Lia Rapella, Tommaso Alberti, Davide Faranda, and Philippe Drobinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1219, https://doi.org/10.5194/egusphere-2025-1219, 2025
Short summary
Short summary
Extreme weather events pose increasing challenges for aviation, including flight disruptions and infrastructure damage. This study examines the influence of anthropogenic climate change on four recent major storms across Europe, the USA, and East Asia. Our research underscores the growing intensity of extreme storms, driven by human-induced climate change, underscoring the need to adapt aviation strategies to an increasingly hazardous environment.
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252, https://doi.org/10.5194/egusphere-2025-252, 2025
Short summary
Short summary
The tracking of Tropical cyclones (TCs) remains a matter of interest for the investigation of observed and simulated tropical cyclones. In this study, Random Forest (RF), a machine learning approach, is considered to track TCs. RF associates TC occurrence or absence to different atmospheric configurations. Compared to trackers found in the literature, it shows similar performance for tracking TCs, better control over false alarm, more flexibility and reveal key variables allowing to detect TCs.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
Earth Syst. Dynam., 16, 169–187, https://doi.org/10.5194/esd-16-169-2025, https://doi.org/10.5194/esd-16-169-2025, 2025
Short summary
Short summary
Explosive cyclones and atmospheric rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers last longer and are deeper than those without atmospheric rivers.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Flavio Maria Emanuele Pons and Davide Faranda
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-352, https://doi.org/10.5194/nhess-2020-352, 2020
Preprint withdrawn
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Emmanouil Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, Marco Reale, and Romualdo Romero
Weather Clim. Dynam., 6, 901–926, https://doi.org/10.5194/wcd-6-901-2025, https://doi.org/10.5194/wcd-6-901-2025, 2025
Short summary
Short summary
Storms strongly resembling hurricanes are sometimes observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become much colder locally than the underlying ocean, creating the conditions for hurricanes to form but only over small areas and for short times. We call the resulting storms "CYCLOPs".
Davide Faranda, Lucas Taligrot, Pascal Yiou, and Nada Caud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2222, https://doi.org/10.5194/egusphere-2025-2222, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
We developed a free online game called ClimarisQ to help people better understand climate change and extreme weather. By playing the game, users learn how decisions about the environment, money, and public opinion affect future risks. We studied how players reacted and found that the game makes climate issues easier to grasp and encourages discussion. This shows that interactive tools like games can support learning and action on climate and environmental challenges.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025, https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Short summary
Properties of extreme meteorological and climatological events are changing under human-caused climate change. Extreme event attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogue method, which compares the observed event to similar events in the past.
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189, https://doi.org/10.5194/egusphere-2025-2189, 2025
Short summary
Short summary
Hemispheric heatwaves have fundamental implications for ecosystems and societies. They are studied together with the large-scale atmospheric dynamics, through the lens of the poleward heat transports by planetary-scale waves. Extremely weak transports of heat towards the Poles are found to be associated with hemispheric heatwaves in the Northern Hemisphere mid-latitudes. Therefore, we conclude that heat transports are a clear indicator, and possibly a precursor of hemispehric heatwaves.
Lia Rapella, Tommaso Alberti, Davide Faranda, and Philippe Drobinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1219, https://doi.org/10.5194/egusphere-2025-1219, 2025
Short summary
Short summary
Extreme weather events pose increasing challenges for aviation, including flight disruptions and infrastructure damage. This study examines the influence of anthropogenic climate change on four recent major storms across Europe, the USA, and East Asia. Our research underscores the growing intensity of extreme storms, driven by human-induced climate change, underscoring the need to adapt aviation strategies to an increasingly hazardous environment.
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252, https://doi.org/10.5194/egusphere-2025-252, 2025
Short summary
Short summary
The tracking of Tropical cyclones (TCs) remains a matter of interest for the investigation of observed and simulated tropical cyclones. In this study, Random Forest (RF), a machine learning approach, is considered to track TCs. RF associates TC occurrence or absence to different atmospheric configurations. Compared to trackers found in the literature, it shows similar performance for tracking TCs, better control over false alarm, more flexibility and reveal key variables allowing to detect TCs.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
Earth Syst. Dynam., 16, 169–187, https://doi.org/10.5194/esd-16-169-2025, https://doi.org/10.5194/esd-16-169-2025, 2025
Short summary
Short summary
Explosive cyclones and atmospheric rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers last longer and are deeper than those without atmospheric rivers.
Cedric Gacial Ngoungue Langue, Helene Brogniez, and Philippe Naveau
EGUsphere, https://doi.org/10.5194/egusphere-2024-3481, https://doi.org/10.5194/egusphere-2024-3481, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This work evaluates the representation of total column water vapor and total cloud cover in General Circulation Models, ERA5 reanalysis and satellite data records from the European Space Agency Climate Change Initiative. A new technique, called "multiresolution analysis," is applied to this evaluation, which enables an analysis of model behavior across different temporal frequencies, from daily to decadal scales, including subseasonal and seasonal variations.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Flavio Maria Emanuele Pons and Davide Faranda
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-352, https://doi.org/10.5194/nhess-2020-352, 2020
Preprint withdrawn
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Cited articles
Bassett, D. and Sporns, O.: Network neuroscience, Nat. Neurosci., 20, 353–364, https://doi.org/10.1038/nn.4502, 2017. a
Berkson, J.: Minimum Chi-Square, not Maximum Likelihood!, Ann. Statist., 8, 457–487, https://doi.org/10.1214/aos/1176345003, 1980. a
Bolton, T. and Zanna, L.: Applications of deep learning to ocean data inference
and subgrid parameterization, J. Adv. Model. Earth Sy.,
11, 376–399, 2019. a
Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita,
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali
di Firenze, 8, 3–62, 1936. a
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a
Brenowitz, N. D. and Bretherton, C. S.: Prognostic validation of a neural
network unified physics parameterization, Geophys. Res. Lett., 45,
6289–6298, 2018. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural
Network Parametrization Trained by Coarse-Graining, J. Adv.
Model. Earth Sy., 11, 2728–2744, 2019. a
Brockwell, P. J. and Davis, R. A.: Introduction to time series and forecasting,
Springer, New York, 2016. a
Buchanan, M.: The limits of machine prediction, Nat. Phys., 15, 304, https://doi.org/10.1038/s41567-019-0489-5, 2019. a
Cao, L.: Practical method for determining the minimum embedding dimension of a
scalar time series, Physica D, 110, 43–50, 1997. a
Cheng, J., Wang, Z., and Pollastri, G.: A neural network approach to ordinal
regression, in: 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), Hong Kong, China, 1–8 June 2008, pp. 1279–1284, IEEE, https://doi.org/10.1109/IJCNN.2008.4633963,
2008. a
Cochran, W. G.: The χ2 test of goodness of fit, Ann. Math.
Stat., 23, 315–345, 1952. a
Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999–4009, https://doi.org/10.5194/gmd-11-3999-2018, 2018. a, b
Eckmann, J.-P. and Ruelle, D.: Ergodic theory of chaos and strange attractors,
in: The theory of chaotic attractors, Springer, New York, pp. 273–312, 1985. a
Eguchi, S. and Copas, J.: Interpreting kullback–leibler divergence with the
neyman–pearson lemma, J. Multivariate Anal., 97, 2034–2040,
2006. a
Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.:
Separating different scales of motion in time series of meteorological
variables, B. Am. Meteorol. Soc., 78, 1473–1484,
1997. a
Faranda, D., Lucarini, V., Turchetti, G., and Vaienti, S.: Generalized extreme
value distribution parameters as dynamical indicators of stability,
Int. J. Bifurcat. Chaos, 22, 1250276, https://doi.org/10.1142/S0218127412502768, 2012. a
Faranda, D., Masato, G., Moloney, N., Sato, Y., Daviaud, F., Dubrulle, B., and
Yiou, P.: The switching between zonal and blocked mid-latitude atmospheric
circulation: a dynamical system perspective, Clim. Dynam., 47,
1587–1599, 2016. a
Faranda, D., Messori, G., and Yiou, P.: Dynamical proxies of North Atlantic
predictability and extremes, Sci. Rep., 7, 41278, https://doi.org/10.1038/srep41278, 2017. a, b
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting
climate model simulations in the representation of convective precipitation,
Clim. Dynam., 44, 45–60, 2015. a
Frank, M. R., Mitchell, L., Dodds, P. S., and Danforth, C. M.: Standing swells
surveyed showing surprisingly stable solutions for the Lorenz'96 model,
Int. J. Bifurcat. Chaos, 24, 1430027, https://doi.org/10.1142/S0218127414300274, 2014. a
Froyland, G., Gottwald, G. A., and Hammerlindl, A.: A computational method to
extract macroscopic variables and their dynamics in multiscale systems, SIAM
J. Appl. Dyn. Syst., 13, 1816–1846, 2014. a
Gettelman, A., Gagne, D. J., Chen, C.-C., Christensen, M. W., Lebo, Z. J., Morrison,
H., and Gantos, G.: Machine learning the warm rain process, J. Adv. Model. Earth Sy., 13, e2020MS002268, https://doi.org/10.1029/2020MS002268, 2021. a
Gottwald, G. A. and Reich, S.: Supervised learning from noisy observations:
Combining machine-learning techniques with data assimilation, Physica D, 423, 132911, https://doi.org/10.1016/j.physd.2021.132911, 2021. a
Grover, A., Kapoor, A., and Horvitz, E.: A deep hybrid model for weather
forecasting, in: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Sydney NSW, Australia, 10–13 August 2015, pp. 379–386, ACM, 2015. a
Hastie, T., Tibshirani, R., and Wainwright, M.: Statistical learning with
sparsity: the lasso and generalizations, CRC/Tailor & Francis,
Boca Raton, Florida, USA, 2015. a
Haupt, S. E., Cowie, J., Linden, S., McCandless, T., Kosovic, B., and
Alessandrini, S.: Machine Learning for Applied Weather Prediction, in: 2018
IEEE 14th International Conference on e-Science (e-Science), Amsterdam, the Netherlands, 29 October–1 November 2018, pp. 276–277,
IEEE, 2018. a
Hinaut, X.: Réseau de neurones récurrent pour le traitement de
séquences abstraites et de structures grammaticales, avec une application
aux interactions homme-robot, PhD thesis, Thèse de doctorat,
Université Claude Bernard Lyon 1, Lyon, France, 2013. a
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional
temperatures and precipitation, Science, 269, 676–679, 1995. a
Hyman, J. M. and Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge
between PDE's and dynamical systems, Physica D, 18,
113–126, 1986. a
Jaeger, H.: The “echo state” approach to analysing and training recurrent
neural networks-with an erratum note, Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report, 148, 13, 2001. a
Jordan, M. I. and Mitchell, T. M.: Machine learning: Trends, perspectives, and
prospects, Science, 349, 255–260, 2015. a
Karagrigoriou, A.: Statistical inference: The minimum distance approach, J. Appl. Stat., 39, 2299–2300, https://doi.org/10.1080/02664763.2012.681565, 2012. a
Korabel, N. and Barkai, E.: Pesin-type identity for intermittent dynamics with
a zero Lyaponov exponent, Phys. Rev. Lett., 102, 050601, https://doi.org/10.1103/PhysRevLett.102.050601, 2009. a
Krasnopolsky, V. M. and Fox-Rabinovitz, M. S.: Complex hybrid models combining
deterministic and machine learning components for numerical climate modeling
and weather prediction, Neural Networks, 19, 122–134, 2006. a
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New approach
to calculation of atmospheric model physics: Accurate and fast neural network
emulation of longwave radiation in a climate model, Mon. Weather Rev.,
133, 1370–1383, 2005. a
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Belochitski, A. A.: Using
ensemble of neural networks to learn stochastic convection parameterizations
for climate and numerical weather prediction models from data simulated by a
cloud resolving model, Advances in Artificial Neural Systems, Hindawi Limited, London, United Kingdom, 2013. a
Kwasniok, F.: The reduction of complex dynamical systems using principal
interaction patterns, Physica D, 92, 28–60, 1996. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Levine, M. E. and Stuart, A. M.: A Framework for Machine Learning of Model Error in Dynamical Systems, arXiv [preprint], arXiv:2107.06658, 14 July 2021. a
Li, D., Han, M., and Wang, J.: Chaotic time series prediction based on a novel
robust echo state network, IEEE T. Neur. Net. Lear., 23, 787–799, 2012. a
Liu, J. N., Hu, Y., He, Y., Chan, P. W., and Lai, L.: Deep neural network
modeling for big data weather forecasting, in: Information Granularity, Big
Data, and Computational Intelligence, Springer, New York, pp. 389–408, 2015. a
Lukoševičius, M.: Simple Echo State Network implementations, mantas.info [code], available at: https://mantas.info/code/simple_esn/, last access: 28 August 2021. a
Moore, G., Renfrew, I. A., and Pickart, R. S.: Multidecadal mobility of the
North Atlantic oscillation, J. Climate, 26, 2453–2466, 2013. a
Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., and Ghil,
M.: Predicting critical transitions in ENSO models. Part II: Spatially
dependent models, J. Climate, 28, 1962–1976, 2015. a
Paladin, G. and Vulpiani, A.: Degrees of freedom of turbulence, Phys. Rev.
A, 35, 1971–1973, https://doi.org/10.1103/PhysRevA.35.1971, 1987. a
Panichi, F. and Turchetti, G.: Lyapunov and reversibility errors for
Hamiltonian flows, Chaos Soliton. Fract., 112, 83–91, 2018. a
Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., and Ott, E.: Using machine
learning to replicate chaotic attractors and calculate Lyapunov exponents
from data, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27,
121102, https://doi.org/10.1063/1.5010300, 2017. a, b
Quinlan, C., Babin, B., Carr, J., and Griffin, M.: Business research methods,
South Western Cengage, Mason, OH, USA, 2019. a
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci. USA,
115, 9684–9689, 2018. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a, b
Scher, S. and Messori, G.: Predicting weather forecast uncertainty with machine
learning, Q. J. Roy. Meteor. Soc., 144,
2830–2841, 2018. a
Scher, S. and Messori, G.: Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground, Geosci. Model Dev., 12, 2797–2809, https://doi.org/10.5194/gmd-12-2797-2019, 2019. a, b
Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y., and Marsan, D.:
Multifractal cascade dynamics and turbulent intermittency, Fractals, 5,
427–471, 1997. a
Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth system modeling
2.0: A blueprint for models that learn from observations and targeted
high-resolution simulations, Geophys. Res. Lett., 44, 12–396, 2017. a
Seleznev, A., Mukhin, D., Gavrilov, A., Loskutov, E., and Feigin, A.: Bayesian
framework for simulation of dynamical systems from multidimensional data
using recurrent neural network, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29, 123115, https://doi.org/10.1063/1.5128372, 2019. a
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo,
W.-C.: Deep learning for precipitation nowcasting: A benchmark and a new
model, in: Advances in neural information processing systems, Long Beach, California, USA, 4–9 December 2017, pp. 5617–5627,
2017. a
Sprenger, M., Schemm, S., Oechslin, R., and Jenkner, J.: Nowcasting foehn wind
events using the adaboost machine learning algorithm, Weather
Forecast., 32, 1079–1099, 2017. a
Wang, J.-X., Wu, J.-L., and Xiao, H.: Physics-informed machine learning
approach for reconstructing Reynolds stress modeling discrepancies based on
DNS data, Physical Review Fluids, 2, 034603, https://doi.org/10.1103/PhysRevFluids.2.034603, 2017. a
Weeks, E. R., Tian, Y., Urbach, J., Ide, K., Swinney, H. L., and Ghil, M.:
Transitions between blocked and zonal flows in a rotating annulus with
topography, Science, 278, 1598–1601, 1997. a
Weisheimer, A., Corti, S., Palmer, T., and Vitart, F.: Addressing model error
through atmospheric stochastic physical parametrizations: impact on the
coupled ECMWF seasonal forecasting system, Philos. T.
Roy. Soc. A, 372,
20130290, https://doi.org/10.1098/rsta.2013.0290, 2014. a
Weyn, J. A., Durran, D. R., and Caruana, R.: Can machines learn to predict
weather? Using deep learning to predict gridded 500-hPa geopotential height
from historical weather data, J. Adv. Model. Earth Sy.,
11, 2680–2693, 2019. a
Wold, S., Esbensen, K., and Geladi, P.: Principal component analysis,
Chemometr. Intell. Lab., 2, 37–52, 1987. a
Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Determining
Lyapunov exponents from a time series, Physica D, 16,
285–317, 1985. a
Wu, J.-L., Xiao, H., and Paterson, E.: Physics-informed machine learning
approach for augmenting turbulence models: A comprehensive framework,
Physical Review Fluids, 3, 074602, https://doi.org/10.1103/PhysRevFluids.3.074602, 2018. a
Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C.:
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting, in: Advances in neural information processing systems, Montréal Canada, 7–12 December 2015, pp.
802–810, 2015. a
Xu, M., Han, M., Qiu, T., and Lin, H.: Hybrid regularized echo state network
for multivariate chaotic time series prediction, IEEE T.
Cybernetics, 49, 2305–2315, 2018. a
Young, L.-S.: What are SRB measures, and which dynamical systems have them?,
J. Stat. Phys., 108, 733–754, 2002. a
Yuval, J. and O'Gorman, P. A.: Stable machine-learning parameterization of
subgrid processes for climate modeling at a range of resolutions, Nat.
Commun., 11, 3295, https://doi.org/10.1038/s41467-020-17142-3, 2020. a
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in...