Articles | Volume 28, issue 2
https://doi.org/10.5194/npg-28-285-2021
https://doi.org/10.5194/npg-28-285-2021
Research article
 | 
14 Jun 2021
Research article |  | 14 Jun 2021

The impact of entrained air on ocean waves

Juan M. Restrepo, Alex Ayet, and Luigi Cavaleri

Related authors

A conceptual model of oceanic heat transport in the Snowball Earth scenario
Darin Comeau, Douglas A. Kurtze, and Juan M. Restrepo
Earth Syst. Dynam., 7, 937–951, https://doi.org/10.5194/esd-7-937-2016,https://doi.org/10.5194/esd-7-937-2016, 2016
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Brief communication: Climate science as a social process – history, climatic determinism, Mertonian norms and post-normality
Hans von Storch
Nonlin. Processes Geophys., 30, 31–36, https://doi.org/10.5194/npg-30-31-2023,https://doi.org/10.5194/npg-30-31-2023, 2023
Short summary
Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO2 fluxes
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131, https://doi.org/10.5194/npg-29-123-2022,https://doi.org/10.5194/npg-29-123-2022, 2022
Short summary
How many modes are needed to predict climate bifurcations? Lessons from an experiment
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022,https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Non-linear hydrologic organization
Allen Hunt, Boris Faybishenko, and Behzad Ghanbarian
Nonlin. Processes Geophys., 28, 599–614, https://doi.org/10.5194/npg-28-599-2021,https://doi.org/10.5194/npg-28-599-2021, 2021
Short summary
Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 27, 133–145, https://doi.org/10.5194/npg-27-133-2020,https://doi.org/10.5194/npg-27-133-2020, 2020
Short summary

Cited articles

Ayet, A., Chapron, B., Redelsperger, J.-L., Lapeyre, G., and Marié, L.: On the Impact of Long Wind-Waves on Near-Surface Turbulence and Momentum Fluxes, Bound.-Lay. Meteorol., 174, 465–491, 2020. a
Babuška, I.: Homogenization Approach In Engineering, in: Computing Methods in Applied Sciences and Engineering, edited by: Glowinski, R. and Lions, J. L., Springer, Berlin, Heidelberg, Lecture Notes in Economics and Mathematical Systems, vol. 134, https://doi.org/10.1007/978-3-642-85972-4_8, 1976. a
Bensousan, A., Lions, J. L., and Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, North-Holland Pub. Co., Amsterdam; New York, ISBN 978-0-8218-5324-5, 1978. a
Caflisch, R. E., Miksis, M. J., Papanicolaou, G., and Ting, L.: Wave propagation in bubbly liquids at finite volume fraction, J. Fluid Mech., 160, 1–14, 1985. a
Cavaleri, L., Baldock, T., Bertotti, L., Langodan, S., Olfateh, M., and Pezzutto, P.: What a Sudden Downpour Reveals About Wind Wave Generation, Procedia IUTAM, 26, 70–80, 2018. a
Download
Short summary
A homogenization of Navier–Stokes to wave scales allows us to determine that air bubbles suspended near the ocean surface modify the momentum equation, specifically enhancing the vorticity in the flow. A model was derived that relates the rain rate to the production of air bubbles near the ocean surface. At wave scales, the air bubbles enhance the wave dissipation for small gravity or capillary waves.