Articles | Volume 28, issue 1
https://doi.org/10.5194/npg-28-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-28-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke
CORRESPONDING AUTHOR
INPT-ENM, Toulouse, France
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
CERFACS, Toulouse, France
Richard Ménard
ARQI/Air Quality Research Division, Environment and Climate Change Canada, Dorval, Québec, Canada
Mohammad El Aabaribaoune
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
CERFACS, Toulouse, France
Matthieu Plu
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Related authors
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020, https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Short summary
Learning physics from data using a deep neural network is a challenge that requires an appropriate but unknown network architecture. The package introduced here helps to design an architecture by translating known physical equations into a network, which the experimenter completes to capture unknown physical processes. A test bed is introduced to illustrate how this learning allows us to focus on truly unknown physical processes in the hope of making better use of data and digital resources.
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018, https://doi.org/10.5194/npg-25-481-2018, 2018
Short summary
Short summary
The forecast of weather prediction uncertainty is a real challenge and is crucial for risk management. However, uncertainty prediction is beyond the capacity of supercomputers, and improvements of the technology may not solve this issue. A new uncertainty prediction method is introduced which takes advantage of fluid equations to predict simple quantities which approximate real uncertainty but at a low numerical cost. A proof of concept is shown by an academic model derived from fluid dynamics.
E. Emili, B. Barret, S. Massart, E. Le Flochmoen, A. Piacentini, L. El Amraoui, O. Pannekoucke, and D. Cariolle
Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014, https://doi.org/10.5194/acp-14-177-2014, 2014
S. Barthélémy, S. Ricci, O. Pannekoucke, O. Thual, and P. O. Malaterre
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-6963-2013, https://doi.org/10.5194/hessd-10-6963-2013, 2013
Preprint withdrawn
Benjamin Doiteau, Florian Pantillon, Matthieu Plu, Laurent Descamps, and Thomas Rieutord
Weather Clim. Dynam., 5, 1409–1427, https://doi.org/10.5194/wcd-5-1409-2024, https://doi.org/10.5194/wcd-5-1409-2024, 2024
Short summary
Short summary
The predictability of Mediterranean cyclones is investigated through a large dataset of 1960 cyclones tracks, ensuring robust statistical results. The motion speed of the cyclone appears to determine the predictability of its location. In particular, the location of specific slow cyclones concentrated in the Gulf of Genoa is remarkably well predicted. It is also shown that the intensity of deep cyclones, occurring in winter, is particularly poorly predicted in the Mediterranean region.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Youness El-Ouartassy, Irène Korsakissok, Matthieu Plu, Olivier Connan, Laurent Descamps, and Laure Raynaud
Atmos. Chem. Phys., 22, 15793–15816, https://doi.org/10.5194/acp-22-15793-2022, https://doi.org/10.5194/acp-22-15793-2022, 2022
Short summary
Short summary
This work investigates the potential value of using fine-scale meteorological ensembles to represent the inherent meteorological uncertainties in atmospheric dispersion model outputs. Probabilistic scores were used to evaluate the probabilistic performance of dispersion ensembles, using an original dataset of new continuous 85Kr air concentration measurements and a well-known source term. The results show that the ensemble dispersion simulations perform better than deterministic ones.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308, https://doi.org/10.5194/gmd-14-6291-2021, https://doi.org/10.5194/gmd-14-6291-2021, 2021
Short summary
Short summary
This study presents the latest version of the global ozone reanalysis product developed at Cerfacs. The reanalysis is based on the assimilation of satellite data from the Infrared Atmospheric Sounding Interferometer (IASI) in the Météo-France chemical transport model. The results show that the quality of the ozone fields is comparable to current state-of-the-art systems and suggest that IASI provides useful information for ozone reanalyses, especially in the upper troposphere.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard
Atmos. Meas. Tech., 14, 2841–2856, https://doi.org/10.5194/amt-14-2841-2021, https://doi.org/10.5194/amt-14-2841-2021, 2021
Short summary
Short summary
This work aims to use correlated IASI errors in the ozone band within a chemical transport model assimilation. The validation of the results against ozone observations from ozonesondes, MLS, and OMI instruments has shown an improvement of the ozone distribution. The computational time was also highly reduced. The surface sea temperature was also improved. The work aims to improve the quality of the ozone prediction, which is important for air quality, climate, and meteorological applications.
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020, https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Short summary
Learning physics from data using a deep neural network is a challenge that requires an appropriate but unknown network architecture. The package introduced here helps to design an architecture by translating known physical equations into a network, which the experimenter completes to capture unknown physical processes. A test bed is introduced to illustrate how this learning allows us to focus on truly unknown physical processes in the hope of making better use of data and digital resources.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020, https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary
Short summary
MAX-DOAS tropospheric NO2 vertical column retrievals from a set of European measurement stations are compared to regional air quality models which contribute to the operational Copernicus Atmosphere Monitoring Service (CAMS). Correlations are on the order of 35 %–75 %; large differences occur for individual pollution plumes. The results demonstrate that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Dimitris Akritidis, Eleni Katragkou, Prodromos Zanis, Ioannis Pytharoulis, Dimitris Melas, Johannes Flemming, Antje Inness, Hannah Clark, Matthieu Plu, and Henk Eskes
Atmos. Chem. Phys., 18, 15515–15534, https://doi.org/10.5194/acp-18-15515-2018, https://doi.org/10.5194/acp-18-15515-2018, 2018
Short summary
Short summary
Analysis and evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecast systems during a deep stratosphere-to-troposphere ozone transport event over Europe in January 2017. Radiosondes, satellite images, ozonesondes and aircraft measurements were used to investigate the folding of the tropopause at several European sites and the induced presence of dry and ozone-rich air in the troposphere.
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018, https://doi.org/10.5194/npg-25-481-2018, 2018
Short summary
Short summary
The forecast of weather prediction uncertainty is a real challenge and is crucial for risk management. However, uncertainty prediction is beyond the capacity of supercomputers, and improvements of the technology may not solve this issue. A new uncertainty prediction method is introduced which takes advantage of fluid equations to predict simple quantities which approximate real uncertainty but at a low numerical cost. A proof of concept is shown by an academic model derived from fluid dynamics.
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017, https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
Short summary
This work presents the features and evaluates the quality of the Copernicus Atmospheric Monitoring Service forecasts of olive pollen distribution in Europe. It is shown that the models can predict the main features of the observed pollen distribution but have more difficulties in capturing the season start and end, which appeared shifted by a few days. We also demonstrated that the combined use of model predictions with up-to-date measurements (data fusion) can strongly improve the results.
Sergey Skachko, Richard Ménard, Quentin Errera, Yves Christophe, and Simon Chabrillat
Geosci. Model Dev., 9, 2893–2908, https://doi.org/10.5194/gmd-9-2893-2016, https://doi.org/10.5194/gmd-9-2893-2016, 2016
Short summary
Short summary
In the present work, we performed a comparison of two broadly used data assimilation algorithms, 4D-Var and EnKF, applied to a state-of-the-art atmospheric chemistry transport model. The comparison is carried out using carefully calibrated error statistics. The paper discusses the advantages and disadvantages of each method applied to real-life conditions of a numerical atmospheric chemistry data assimilation.
V. Marécal, V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beekmann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux, A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin, H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss, C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W. Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe, I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Parmentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson, L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Timmermans, Á. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira, and A. Ung
Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, https://doi.org/10.5194/gmd-8-2777-2015, 2015
Short summary
Short summary
This paper describes the air quality forecasting system over Europe put in place in the Monitoring Atmospheric Composition and Climate projects. It provides daily and 4-day forecasts and analyses for the previous day for major gas and particulate pollutants and their main precursors. These products are based on a multi-model approach using seven state-of-the-art models developed in Europe. An evaluation of the performance of the system is discussed in the paper.
J. Guerbette, M. Plu, C. Barthe, and J.-F. Mahfouf
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-4919-2015, https://doi.org/10.5194/nhessd-3-4919-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Active phases of the Madden-Julian Oscillation (MJO) are known to favour the formation of tropical cyclones in the South-West Indian Ocean. A meso-scale numerical simulation of a tropical cyclogenesis during such an event is investigated. A large-scale Equatorial jet that is associated with the active phase of the MJO is shown to play a major role on the early stage of the cyclogenesis, through a transfer of kinetic energy from the jet to the cyclone.
A. Réchou, T. Narayana Rao, O. Bousquet, M. Plu, and R. Decoupes
Atmos. Meas. Tech., 7, 409–418, https://doi.org/10.5194/amt-7-409-2014, https://doi.org/10.5194/amt-7-409-2014, 2014
N. Yu, C. Barthe, and M. Plu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-999-2014, https://doi.org/10.5194/nhessd-2-999-2014, 2014
Revised manuscript not accepted
E. Emili, B. Barret, S. Massart, E. Le Flochmoen, A. Piacentini, L. El Amraoui, O. Pannekoucke, and D. Cariolle
Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014, https://doi.org/10.5194/acp-14-177-2014, 2014
M. Plu
Nonlin. Processes Geophys., 20, 793–801, https://doi.org/10.5194/npg-20-793-2013, https://doi.org/10.5194/npg-20-793-2013, 2013
S. Barthélémy, S. Ricci, O. Pannekoucke, O. Thual, and P. O. Malaterre
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-6963-2013, https://doi.org/10.5194/hessd-10-6963-2013, 2013
Preprint withdrawn
Related subject area
Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Bridging classical data assimilation and optimal transport: the 3D-Var case
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Evolution of small-scale turbulence at large Richardson numbers
Inferring flow energy, space and time scales: freely-drifting vs fixed point observations
How far can the statistical error estimation problem be closed by collocated data?
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Data-driven reconstruction of partially observed dynamical systems
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Applying prior correlations for ensemble-based spatial localization
A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Inferring the instability of a dynamical system from the skill of data assimilation exercises
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Improving the potential accuracy and usability of EURO-CORDEX estimates of future rainfall climate using frequentist model averaging
Ensemble Riemannian data assimilation over the Wasserstein space
An early warning sign of critical transition in the Antarctic ice sheet – a data-driven tool for a spatiotemporal tipping point
Behavior of the iterative ensemble-based variational method in nonlinear problems
A method for predicting the uncompleted climate transition process
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Correcting for model changes in statistical postprocessing – an approach based on response theory
Brief communication: Residence time of energy in the atmosphere
Seasonal statistical–dynamical prediction of the North Atlantic Oscillation by probabilistic post-processing and its evaluation
Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems
Order of operation for multi-stage post-processing of ensemble wind forecast trajectories
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024, https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Short summary
A novel approach, optimal transport data assimilation (OTDA), is introduced to merge DA and OT concepts. By leveraging OT's displacement interpolation in space, it minimises mislocation errors within DA applied to physical fields, such as water vapour, hydrometeors, and chemical species. Its richness and flexibility are showcased through one- and two-dimensional illustrations.
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024, https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Short summary
Forecasts have uncertainties. It is thus essential to reduce these uncertainties. Such reduction requires uncertainty quantification, which often means running costly models multiple times. The cost limits the number of model runs and thus the quantification’s accuracy. This study proposes a technique that utilizes users’ knowledge of forecast uncertainties to improve uncertainty quantification. Tests show that this technique improves uncertainty reduction.
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024, https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
Short summary
The nonstationary kinetic model of turbulence is used to describe the evolution and structure of the upper turbulent layer with the parameters taken from in situ observations. As an example, we use a set of data for three cruises made in different areas of the world ocean. With the given profiles of current shear and buoyancy frequency, the theory yields results that satisfactorily agree with the measurements of the turbulent dissipation rate.
Aurelien Luigi Serge Ponte, Lachlan Astfalck, Matthew Rayson, Andrew Zulberti, and Nicole Jones
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-10, https://doi.org/10.5194/npg-2024-10, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
We propose a novel method for the estimation of ocean flow properties in terms of its energy, spatial and temporal scales. The method relies on flow observations that are either collected at a fixed location or along the flow as they would if inferred from the trajectory of freely-drifting platforms. The accuracy of the method is quantified in different experimental configurations. We demonstrate freely drifting platforms can, even in isolation, enable to capture flow properties is a first.
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023, https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary
Short summary
Accurate estimation of the error statistics required for data assimilation remains an ongoing challenge, as statistical assumptions are required to solve the estimation problem. This work provides a conceptual view of the statistical error estimation problem in light of the increasing number of available datasets. We found that the total number of required assumptions increases with the number of overlapping datasets, but the relative number of error statistics that can be estimated increases.
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297, https://doi.org/10.5194/npg-30-289-2023, https://doi.org/10.5194/npg-30-289-2023, 2023
Short summary
Short summary
In the ensemble Kalman filter, the ensemble space may not fully capture the forecast errors due to the limited ensemble size and systematic model errors, which affect the accuracy of analysis and prediction. This study proposes a new algorithm to use cost-free pseudomembers to expand the ensemble space effectively and improve analysis accuracy during the analysis step, without increasing the ensemble size during forecasting.
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236, https://doi.org/10.5194/npg-30-217-2023, https://doi.org/10.5194/npg-30-217-2023, 2023
Short summary
Short summary
Strongly coupled data assimilation (SCDA) generates coherent integrated Earth system analyses by assimilating the full Earth observation set into all Earth components. We describe SCDA based on the ensemble Kalman filter with a hierarchy of coupled models, from a coupled Lorenz to the Climate Forecast System v2. SCDA with a sufficiently large ensemble can provide more accurate coupled analyses compared to weakly coupled DA. The correlation-cutoff method can compensate for a small ensemble size.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023, https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary
Short summary
The goal of this paper is to obtain probabilistic predictions of a partially observed dynamical system without knowing the model equations. It is illustrated using the three-dimensional Lorenz system, where only two components are observed. The proposed data-driven procedure is low-cost, is easy to implement, uses linear and Gaussian assumptions and requires only a small amount of data. It is based on an iterative linear Kalman smoother with a state augmentation.
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47, https://doi.org/10.5194/npg-30-37-2023, https://doi.org/10.5194/npg-30-37-2023, 2023
Short summary
Short summary
Older observations of the Earth system sometimes lack information about the time they were taken, posing problems for analyses of past climate. To begin to ameliorate this problem, we propose new methods of varying complexity, including methods to estimate the distribution of the offsets between true and reported observation times. The most successful method accounts for the nonlinearity in the system, but even the less expensive ones can improve data assimilation in the presence of time error.
Chu-Chun Chang and Eugenia Kalnay
Nonlin. Processes Geophys., 29, 317–327, https://doi.org/10.5194/npg-29-317-2022, https://doi.org/10.5194/npg-29-317-2022, 2022
Short summary
Short summary
This study introduces a new approach for enhancing the ensemble data assimilation (DA), a technique that combines observations and forecasts to improve numerical weather predictions. Our method uses the prescribed correlations to suppress spurious errors, improving the accuracy of DA. The experiments on the simplified atmosphere model show that our method has comparable performance to the traditional method but is superior in the early stage and is more computationally efficient.
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253, https://doi.org/10.5194/npg-29-241-2022, https://doi.org/10.5194/npg-29-241-2022, 2022
Short summary
Short summary
Numerical weather prediction requires the melding of both computational model and data obtained from sensors such as satellites. We focus on one algorithm to accomplish this. We aim to aid its use by additionally supplying it with data obtained from separate models that describe the average behavior of the computational model at any given time. We show that our approach outperforms the standard approaches to this problem.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022, https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Short summary
The outputs from Earth system models are optimally combined with satellite observations to produce accurate forecasts through a process called data assimilation. Many existing data assimilation methodologies have some assumptions regarding the shape of the probability distributions of model output and observations, which results in forecast inaccuracies. In this paper, we test the effectiveness of a newly proposed methodology that relaxes such assumptions about high-dimensional models.
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021, https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary
Short summary
Chaotic dynamical systems are sensitive to the initial conditions, which are crucial for climate forecast. These properties are often used to inform the design of data assimilation (DA), a method used to estimate the exact initial conditions. However, obtaining the instability properties is burdensome for complex problems, both numerically and analytically. Here, we suggest a different viewpoint. We show that the skill of DA can be used to infer the instability properties of a dynamical system.
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021, https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary
Short summary
In weather forecasting, observations are incorporated into a model of the atmosphere through a process called data assimilation. Sometimes observations in one location may impact the weather forecast in another faraway location in undesirable ways. The impact of distant observations on the forecast is mitigated through a process called localization. We propose a new method for localization when a model has multiple length scales, as in a model spanning both the ocean and the atmosphere.
Stephen Jewson, Giuliana Barbato, Paola Mercogliano, Jaroslav Mysiak, and Maximiliano Sassi
Nonlin. Processes Geophys., 28, 329–346, https://doi.org/10.5194/npg-28-329-2021, https://doi.org/10.5194/npg-28-329-2021, 2021
Short summary
Short summary
Climate model simulations are uncertain. In some cases this makes it difficult to know how to use them. Significance testing is often used to deal with this issue but has various shortcomings. We describe two alternative ways to manage uncertainty in climate model simulations that avoid these shortcomings. We test them on simulations of future rainfall over Europe and show they produce more accurate projections than either using unadjusted climate model output or statistical testing.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman
Nonlin. Processes Geophys., 28, 295–309, https://doi.org/10.5194/npg-28-295-2021, https://doi.org/10.5194/npg-28-295-2021, 2021
Short summary
Short summary
Data assimilation aims to improve hydrologic and weather forecasts by combining available information from Earth system models and observations. The classical approaches to data assimilation usually proceed with some preconceived assumptions about the shape of their probability distributions. As a result, when such assumptions are invalid, the forecast accuracy suffers. In the proposed methodology, we relax such assumptions and demonstrate improved performance.
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys., 28, 153–166, https://doi.org/10.5194/npg-28-153-2021, https://doi.org/10.5194/npg-28-153-2021, 2021
Short summary
Short summary
This paper introduces a tool for data-driven discovery of early warning signs of critical transitions in ice shelves from remote sensing data. Our directed spectral clustering method considers an asymmetric affinity matrix along with the associated directed graph Laplacian. We applied our approach to reprocessing the ice velocity data and remote sensing satellite images of the Larsen C ice shelf.
Shin'ya Nakano
Nonlin. Processes Geophys., 28, 93–109, https://doi.org/10.5194/npg-28-93-2021, https://doi.org/10.5194/npg-28-93-2021, 2021
Short summary
Short summary
The ensemble-based variational method is a method for solving nonlinear data assimilation problems by using an ensemble of multiple simulation results. Although this method is derived based on a linear approximation, highly uncertain problems, in which system nonlinearity is significant, can also be solved by applying this method iteratively. This paper reformulated this iterative algorithm to analyze its behavior in high-dimensional nonlinear problems and discuss the convergence.
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020, https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Short summary
A system transiting from one stable state to another has to experience a period. Can we predict the end moment (state) if the process has not been completed? This paper presents a method to solve this problem. This method is based on the quantitative relationship among the parameters, which is used to describe the transition process of the abrupt change. By using the historical data, we extract some parameters for predicting the uncompleted climate transition process.
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020, https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary
Short summary
Forecasts of ensemble systems are statistically aligned to synoptic observations at DWD in order to provide support for warning decision management. Motivation and design consequences for extreme and rare meteorological events are presented. Especially for probabilities of severe wind gusts global logistic parameterisations are developed that generate robust statistical forecasts for extreme events, while local characteristics are preserved.
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020, https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Short summary
Postprocessing schemes used to correct weather forecasts are no longer efficient when the model generating the forecasts changes. An approach based on response theory to take the change into account without having to recompute the parameters based on past forecasts is presented. It is tested on an analytical model and a simple model of atmospheric variability. We show that this approach is effective and discuss its potential application for an operational environment.
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020, https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Short summary
We deduce that after a global thermal perturbation, the Earth's
atmosphere would need about a couple of months to come back to equilibrium.
André Düsterhus
Nonlin. Processes Geophys., 27, 121–131, https://doi.org/10.5194/npg-27-121-2020, https://doi.org/10.5194/npg-27-121-2020, 2020
Short summary
Short summary
Seasonal prediction of the of the North Atlantic Oscillation (NAO) has been improved in recent years by improving dynamical models and ensemble predictions. One step therein was the so-called sub-sampling, which combines statistical and dynamical predictions. This study generalises this approach and makes it much more accessible. Furthermore, it presents a new verification approach for such predictions.
Courtney Quinn, Terence J. O'Kane, and Vassili Kitsios
Nonlin. Processes Geophys., 27, 51–74, https://doi.org/10.5194/npg-27-51-2020, https://doi.org/10.5194/npg-27-51-2020, 2020
Short summary
Short summary
This study presents a novel method for reduced-rank data assimilation of multiscale highly nonlinear systems. Time-varying dynamical properties are used to determine the rank and projection of the system onto a reduced subspace. The variable reduced-rank method is shown to succeed over other fixed-rank methods. This work provides implications for performing strongly coupled data assimilation with a limited number of ensemble members on high-dimensional coupled climate models.
Nina Schuhen
Nonlin. Processes Geophys., 27, 35–49, https://doi.org/10.5194/npg-27-35-2020, https://doi.org/10.5194/npg-27-35-2020, 2020
Short summary
Short summary
We present a new way to adaptively improve weather forecasts by incorporating last-minute observation information. The recently measured error, together with a statistical model, gives us an indication of the expected future error of wind speed forecasts, which are then adjusted accordingly. This new technique can be especially beneficial for customers in the wind energy industry, where it is important to have reliable short-term forecasts, as well as providers of extreme weather warnings.
Cited articles
Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging, available at: https://www.ecmwf.int/node/8172 (last access: 13 January 2021),
ECMWF Workshop on Flow-dependent aspecyts of data assimilation, Reading, UK, 11–13 June 2007, 151–168, 2007. a
Boisserie, M., Arbogast, P., Descamps, L., Pannekoucke, O., and Raynaud, L.:
Estimating and diagnosing model error variances in the Meteo-France global
NWP model, Q. J. Roy. Meteor. Soc., 140,
846–854, https://doi.org/10.1002/qj.2173,
2013. a
Boyd, J.: Chebyshev and Fourier Spectral Methods, Dover Publications, Mineola, New York, USA, 2001. a
Carrassi, A. and Vannitsem, S.: Accounting for Model Error in Variational Data
Assimilation: A Deterministic Formulation, Mon. Weather Rev., 138,
3369–3386, https://doi.org/10.1175/2010MWR3192.1,
2010. a
Daley, R.: Atmospheric Data Analysis, Cambridge University Press,
New York, USA,
1991. a
Dee, D.: On-line Estimation of Error Covariance Parameters for Atmospheric Data
Assimilation, Mon. Weather Rev., 123, 1128–1145, 1995. a
Derber, J. and Bouttier, F.: A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51, 195–221, 1999. a
Dubinkina, S.: Relevance of conservative numerical schemes for an Ensemble
Kalman Filter, Q. J. Roy. Meteor. Soc., 144,
468–477, https://doi.org/10.1002/qj.3219, 2018. a
Emili, E., Gürol, S., and Cariolle, D.: Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation of atmospheric composition using QG-Chem 1.0, Geosci. Model Dev., 9, 3933–3959, https://doi.org/10.5194/gmd-9-3933-2016, 2016. a
Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer
Berlin Heidelberg, https://doi.org/10.1007/978-3-642-03711-5, 2009. a
Grudzien, C., Bocquet, M., and Carrassi, A.: On the numerical integration of the Lorenz-96 model, with scalar additive noise, for benchmark twin experiments, Geosci. Model Dev., 13, 1903–1924, https://doi.org/10.5194/gmd-13-1903-2020, 2020. a
Hatfield, S., Düben, P., Chantry, M., Kondo, K., Miyoshi, T., and Palmer, T.:
Choosing the Optimal Numerical Precision for Data Assimilation in the
Presence of Model Error, J. Adv. Model. Earth Sy., 10,
2177–2191, https://doi.org/10.1029/2018ms001341, 2018. a
Hirt, C.: Heuristic stability theory for finite-difference equations, J.
Comput. Phys., 2, 339–355, https://doi.org/10.1016/0021-9991(68)90041-7,
1968. a
Houtekamer, P. L., Mitchell, H. L., and Deng, X.: Model Error Representation in
an Operational Ensemble Kalman Filter, Mon. Weather Rev., 137,
2126–2143, 2009. a
Lax, P. D. and Richtmyer, R. D.: Survey of the stability of linear finite
difference equations, Commun. Pur. Appl. Math., 9,
267–293, https://doi.org/10.1002/cpa.3160090206,
1956. a
McCalpin, J. D.: A Quantitative Analysis of the Dissipation Inherent in
Semi-Lagrangian Advection, Mon. Weather Rev., 116, 2330–2336, 1988. a
Ménard, R. and Chang, L.-P.: Assimilation of Stratospheric Chemical Tracer
Observations Using a Kalman Filter. Part II: chi-2-Validated Results and
Analysis of Variance and Correlation Dynamics, Mon. Weather Rev., 128,
2672–2686, https://doi.org/10.1175/1520-0493(2000)128<2672:AOSCTO>2.0.CO;2, 2000. a, b
Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts,
G., Steinheimer, M., and Weisheimer, A.: Stochastic Parametrization and Model
Uncertainty, Tech Memo 598, ECMWF, Reading, UK, 44 p., 2009. a
Pannekoucke, O. and Fablet, R.: PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations, Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020, 2020. a, b
Pannekoucke, O. and Massart, S.: Estimation of the local diffusion tensor and
normalization for heterogeneous correlation modelling using a diffusion
equation., Q. J. Roy. Meteor. Soc., 134, 1425–1438, 2008. a
Pannekoucke, O., Ricci, S., Barthelemy, S., Ménard, R., and Thual, O.:
Parametric Kalman Filter for chemical transport model, Tellus A, 68, 31547,
https://doi.org/10.3402/tellusa.v68.31547, 2016. a, b
Pannekoucke, O., Bocquet, M., and Ménard, R.: Parametric covariance dynamics for the nonlinear diffusive Burgers equation, Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018, 2018a. a, b, c, d
Pannekoucke, O., Ricci, S., Barthelemy, S., Ménard, R., and Thual, O.:
Parametric Kalman filter for chemical transport models – Corrigendum, Tellus A, 70, 1–2, https://doi.org/10.1080/16000870.2018.1472954, 2018b. a
Resseguier, V., Mémin, E., and Chapron, B.: Geophysical flows under
location uncertainty, Part I Random transport and general models, Geophys. Astro. Fluid, 111, 149–176,
https://doi.org/10.1080/03091929.2017.1310210, 2017.
a
Shutts, G. J.: A kinetic energy backscatter algorithm for use in ensemble
prediction systems, Q. J. Roy. Meteor. Soc.,
131, 3079–3102,
https://doi.org/10.1256/qj.04.106,
2005. a
Vannitsem, S. and Toth, Z.: Short-Term Dynamics of Model Errors, J.
Atmos. Sci., 59, 2594–2604,
https://doi.org/10.1175/1520-0469(2002)059<2594:STDOME>2.0.CO;2,
2002. a
Warming, R. and Hyett, B.: The modified equation approach to the stability and
accuracy analysis of finite-difference methods, J. Comput.
Phys., 14, 159–179, https://doi.org/10.1016/0021-9991(74)90011-4, 1974. a
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a
generalized diffusion equation (Tech. Memo. ECMWF, num. 306), Q.
J. Roy. Meteor. Soc., 127, 1815–1846, 2001. a
Weaver, A. T. and Mirouze, I.: On the diffusion equation and its application to
isotropic and anisotropic correlation modelling in variational assimilation,
Q. J. Roy. Meteor. Soc., 139, 242–260, 2013. a
Short summary
Numerical weather prediction involves numerically solving the mathematical equations, which describe the geophysical flow, by transforming them so that they can be computed. Through this transformation, it appears that the equations actually solved by the machine are then a modified version of the original equations, introducing an error that contributes to the model error. This work helps to characterize the covariance of the model error that is due to this modification of the equations.
Numerical weather prediction involves numerically solving the mathematical equations, which...