Articles | Volume 28, issue 1
Nonlin. Processes Geophys., 28, 1–22, 2021
https://doi.org/10.5194/npg-28-1-2021
Nonlin. Processes Geophys., 28, 1–22, 2021
https://doi.org/10.5194/npg-28-1-2021

Research article 14 Jan 2021

Research article | 14 Jan 2021

A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective

Olivier Pannekoucke et al.

Related authors

SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-89,https://doi.org/10.5194/gmd-2021-89, 2021
Preprint under review for GMD
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Parametric covariance dynamics for the nonlinear diffusive Burgers equation
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018,https://doi.org/10.5194/npg-25-481-2018, 2018
Short summary
Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model
E. Emili, B. Barret, S. Massart, E. Le Flochmoen, A. Piacentini, L. El Amraoui, O. Pannekoucke, and D. Cariolle
Atmos. Chem. Phys., 14, 177–198, https://doi.org/10.5194/acp-14-177-2014,https://doi.org/10.5194/acp-14-177-2014, 2014
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
S. Barthélémy, S. Ricci, O. Pannekoucke, O. Thual, and P. O. Malaterre
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-6963-2013,https://doi.org/10.5194/hessd-10-6963-2013, 2013
Preprint withdrawn

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Ensemble Riemannian Data Assimilation over the Wasserstein Space
Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2021-11,https://doi.org/10.5194/npg-2021-11, 2021
Revised manuscript accepted for NPG
An early warning sign of critical transition in the Antarctic ice sheet – a data-driven tool for a spatiotemporal tipping point
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys., 28, 153–166, https://doi.org/10.5194/npg-28-153-2021,https://doi.org/10.5194/npg-28-153-2021, 2021
Short summary
Behavior of the iterative ensemble-based variational method in nonlinear problems
Shin'ya Nakano
Nonlin. Processes Geophys., 28, 93–109, https://doi.org/10.5194/npg-28-93-2021,https://doi.org/10.5194/npg-28-93-2021, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020,https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020,https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary

Cited articles

Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging, available at: https://www.ecmwf.int/node/8172 (last access: 13 January 2021), ECMWF Workshop on Flow-dependent aspecyts of data assimilation, Reading, UK, 11–13 June 2007, 151–168, 2007. a
Boisserie, M., Arbogast, P., Descamps, L., Pannekoucke, O., and Raynaud, L.: Estimating and diagnosing model error variances in the Meteo-France global NWP model, Q. J. Roy. Meteor. Soc., 140, 846–854, https://doi.org/10.1002/qj.2173, 2013. a
Boyd, J.: Chebyshev and Fourier Spectral Methods, Dover Publications, Mineola, New York, USA, 2001. a
Carrassi, A. and Vannitsem, S.: Accounting for Model Error in Variational Data Assimilation: A Deterministic Formulation, Mon. Weather Rev., 138, 3369–3386, https://doi.org/10.1175/2010MWR3192.1, 2010. a
Cohn, S.: Dynamics of Short-Term Univariate Forecast Error Covariances, Mon. Weather Rev., 121, 3123–3149, 1993. a, b, c, d, e, f
Download
Short summary
Numerical weather prediction involves numerically solving the mathematical equations, which describe the geophysical flow, by transforming them so that they can be computed. Through this transformation, it appears that the equations actually solved by the machine are then a modified version of the original equations, introducing an error that contributes to the model error. This work helps to characterize the covariance of the model error that is due to this modification of the equations.