Articles | Volume 27, issue 1
https://doi.org/10.5194/npg-27-75-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-27-75-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
retired
Gurbax S. Lakhina
Indian Institute for Geomagnetism, Navi Mumbai, India
Rajkumar Hajra
Indian Institute of Technology Indore, Simrol, Indore, India
Related authors
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Katharina Ostaszewski, Karl-Heinz Glassmeier, Charlotte Goetz, Philip Heinisch, Pierre Henri, Sang A. Park, Hendrik Ranocha, Ingo Richter, Martin Rubin, and Bruce Tsurutani
Ann. Geophys., 39, 721–742, https://doi.org/10.5194/angeo-39-721-2021, https://doi.org/10.5194/angeo-39-721-2021, 2021
Short summary
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Anthony J. Mannucci, Ryan McGranaghan, Xing Meng, Bruce T. Tsurutani, and Olga P. Verkhoglyadova
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-108, https://doi.org/10.5194/angeo-2019-108, 2019
Preprint withdrawn
Short summary
Short summary
The interaction between the Earth's environment and the electrically charged gas known as the solar wind is highly complex and has been under study for decades. We use a universal principle of physics – the relativity principle – to gain physical insight into this interaction. We apply this principle to physical processes that occur during geomagnetic storms. We clarify how the solar wind ultimately causes currents to flow between the Earth's upper atmosphere and space.
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018, https://doi.org/10.5194/npg-25-477-2018, 2018
Fernando L. Guarnieri, Bruce T. Tsurutani, Luis E. A. Vieira, Rajkumar Hajra, Ezequiel Echer, Anthony J. Mannucci, and Walter D. Gonzalez
Nonlin. Processes Geophys., 25, 67–76, https://doi.org/10.5194/npg-25-67-2018, https://doi.org/10.5194/npg-25-67-2018, 2018
Short summary
Short summary
In this work we developed a method to obtain a time series named as AE* which is well correlated with the geomagnetic AE index. In this process, wavelet filtering is applied to interplanetary solar wind data from spacecrafts around the L1 libration point. This geomagnetic indicator AE* can be obtained well before the AE index release in its final form, and it can be used to feed models for geomagnetic effects, such as the relativistic electrons, giving forecasts ~ 1 to 2 days in advance.
Gurbax S. Lakhina and Bruce T. Tsurutani
Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, https://doi.org/10.5194/npg-24-745-2017, 2017
Short summary
Short summary
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites moving through the ionosphere during Carrington-type super magnetic storms is calculated by a simple first-order model which takes into account the ion-neutral drag between the upward-moving oxygen ions and O neutral atoms. It is shown that oxygen ions and atoms can be uplifted to 850 km altitude, where they produce about 40 times more satellite drag per unit mass than normal.
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
B. T. Tsurutani, R. Hajra, E. Echer, and J. W. Gjerloev
Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, https://doi.org/10.5194/angeo-33-519-2015, 2015
Short summary
Short summary
Particularly intense substorms (SSS), brilliant auroral displays with strong >106A currents in the ionosphere, are studied. It is believed that these SSS events cause power outages during magnetic storms. It is shown that SSS events can occur during all intensity magnetic storms; thus power problems are not necessarily restricted to the rare most intense storms. We show four SSS events that are triggered by solar wind pressure pulses. If this is typical, ~30-minute warnings could be issued.
B. T. Tsurutani, A. J. Mannuccci, O. P. Verkhoglyadova, and G. S. Lakhina
Ann. Geophys., 31, 145–150, https://doi.org/10.5194/angeo-31-145-2013, https://doi.org/10.5194/angeo-31-145-2013, 2013
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Katharina Ostaszewski, Karl-Heinz Glassmeier, Charlotte Goetz, Philip Heinisch, Pierre Henri, Sang A. Park, Hendrik Ranocha, Ingo Richter, Martin Rubin, and Bruce Tsurutani
Ann. Geophys., 39, 721–742, https://doi.org/10.5194/angeo-39-721-2021, https://doi.org/10.5194/angeo-39-721-2021, 2021
Short summary
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Rajkumar Hajra
Ann. Geophys., 39, 181–187, https://doi.org/10.5194/angeo-39-181-2021, https://doi.org/10.5194/angeo-39-181-2021, 2021
Short summary
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Anthony J. Mannucci, Ryan McGranaghan, Xing Meng, Bruce T. Tsurutani, and Olga P. Verkhoglyadova
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-108, https://doi.org/10.5194/angeo-2019-108, 2019
Preprint withdrawn
Short summary
Short summary
The interaction between the Earth's environment and the electrically charged gas known as the solar wind is highly complex and has been under study for decades. We use a universal principle of physics – the relativity principle – to gain physical insight into this interaction. We apply this principle to physical processes that occur during geomagnetic storms. We clarify how the solar wind ultimately causes currents to flow between the Earth's upper atmosphere and space.
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018, https://doi.org/10.5194/npg-25-477-2018, 2018
Fernando L. Guarnieri, Bruce T. Tsurutani, Luis E. A. Vieira, Rajkumar Hajra, Ezequiel Echer, Anthony J. Mannucci, and Walter D. Gonzalez
Nonlin. Processes Geophys., 25, 67–76, https://doi.org/10.5194/npg-25-67-2018, https://doi.org/10.5194/npg-25-67-2018, 2018
Short summary
Short summary
In this work we developed a method to obtain a time series named as AE* which is well correlated with the geomagnetic AE index. In this process, wavelet filtering is applied to interplanetary solar wind data from spacecrafts around the L1 libration point. This geomagnetic indicator AE* can be obtained well before the AE index release in its final form, and it can be used to feed models for geomagnetic effects, such as the relativistic electrons, giving forecasts ~ 1 to 2 days in advance.
Gurbax S. Lakhina and Bruce T. Tsurutani
Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, https://doi.org/10.5194/npg-24-745-2017, 2017
Short summary
Short summary
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites moving through the ionosphere during Carrington-type super magnetic storms is calculated by a simple first-order model which takes into account the ion-neutral drag between the upward-moving oxygen ions and O neutral atoms. It is shown that oxygen ions and atoms can be uplifted to 850 km altitude, where they produce about 40 times more satellite drag per unit mass than normal.
Odim Mendes, Margarete Oliveira Domingues, Ezequiel Echer, Rajkumar Hajra, and Varlei Everton Menconi
Nonlin. Processes Geophys., 24, 407–417, https://doi.org/10.5194/npg-24-407-2017, https://doi.org/10.5194/npg-24-407-2017, 2017
Short summary
Short summary
The effects of the Sun upon the Earth's atmosphere occur in several ways. Significant electrodynamic coupling processes transfer particles and energy from the solar wind into the Earth's environment. Applied to the dynamical characteristics of high-intensity, long-duration, continuous auroral activity (HILDCAA) and non-HILDCAA events, nonlinear analysis tools like RQA aid to unravel peculiarities related to two concurrent space mechanisms known as magnetic reconnection and viscous interaction.
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
B. T. Tsurutani, R. Hajra, E. Echer, and J. W. Gjerloev
Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, https://doi.org/10.5194/angeo-33-519-2015, 2015
Short summary
Short summary
Particularly intense substorms (SSS), brilliant auroral displays with strong >106A currents in the ionosphere, are studied. It is believed that these SSS events cause power outages during magnetic storms. It is shown that SSS events can occur during all intensity magnetic storms; thus power problems are not necessarily restricted to the rare most intense storms. We show four SSS events that are triggered by solar wind pressure pulses. If this is typical, ~30-minute warnings could be issued.
B. T. Tsurutani, A. J. Mannuccci, O. P. Verkhoglyadova, and G. S. Lakhina
Ann. Geophys., 31, 145–150, https://doi.org/10.5194/angeo-31-145-2013, https://doi.org/10.5194/angeo-31-145-2013, 2013
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
NORAD Tracking of the 2022 February Starlink Satellites and the Immediate Loss of 32 Satellites
Nonlinear vortex solution for perturbations in the Earth's ionosphere
Alexandra Ruth Fogg, Caitríona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin
Nonlin. Processes Geophys., 31, 195–206, https://doi.org/10.5194/npg-31-195-2024, https://doi.org/10.5194/npg-31-195-2024, 2024
Short summary
Short summary
Auroral kilometric radiation (AKR) is a radio emission emitted by Earth. Due to the complex mixture of phenomena in the magnetosphere, it is tricky to estimate the time difference between the excitation of two systems. In this study, AKR is compared with indices describing Earth's system. Time differences between the excitation of AKR and the indices are estimated using mutual information. AKR feels an enhancement before the aurora but after more polar latitude features.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020, https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
Short summary
The soliton vortex two-dimensional solution has been derived for the ionosphere. Why are solitons so important? The advantage of an analytical soliton solution is its localization in space and time as a consequence of balance between nonlinearity and dispersion. One very good example of the balance between nonlinear and dispersive effects is tsunami, a surface gravity one-dimensional wave that can propagate with constant velocity and constant amplitude when it is assured by a parameter regime.
Cited articles
Acero, F. J., Vaquero, J. M., Gallego, M. C., and Garcia, J. A.: A limit for the
values of the Dst geomagnetic index, Geophys. Res. Lett., 45, 9435–9440,
https://doi.org/10.1029/2018GL079676, 2018.
Aikio, A. T., Sergeev, V. A., Shukhtina, M. A., Vagina, L. I., Angelopoulos,
V., and Reeves, G. D.: Characteristics of pseudobreakups and substorms
observed in the ionosphere, at the geosynchronous orbit, and in the midtail,
J. Geophys. Res., 104, 12263–12287,
https://doi.org/10.1029/1999JA900118, 1999.
Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Phys.,
12, 273–282, 1964.
Akasofu, S.-I.: Magnetospheric substorms, a model, in: Solar Terrestrial
Physics, Part III, edited by: Dyer, D., p. 131, D. Reidel Publ., Norwell,
Mass, 1972.
Akasofu, S.-I. and Chao, J. K.: Interplanetary shock waves and
magnetospheric substorms, Planet. Space Sci., 28, 381–385, 1980.
Akasofu, S.-I. and Kamide, Y.: Comment on “The extreme magnetic storm of
1–2 September 1859” by B. T. Tsurutani, W. D. Gonzalez, G. S. Lakhina and S.
Alex, J. Geophys. Res., 110, A09226,
https://doi.org/10.1029/2005JA011005, 2005.
Alfvén, H.: Cosmical Electrodynamics, Oxford at the Clarendon Press,
1950.
Anderson, B. J. and Hamilton, D. C.: Electromagnetic ion cyclotron waves
stimulated by modest magnetospheric compressions, J. Geophys. Res., 98,
11369–11382, 1993.
Anderson, D. N., Decker, D. T., and Valladares, C. E.: Global theoretical
ionospheric model (GTIM) in Solar-Terrestrial Energy Program: Handbook of
Ionospheric Models, Natl. Oceanic and Atmos. Admin, Boulder, CO, 133–152,
1996.
Araki, T.: Historically largest geomagnetic sudden commencement (SC) since
1868, Earth, Plan. Spa., 66, 164, https://doi.org/10.1186/s40623-014-0164-0, 2014.
Araki, T., Tsunomura, S., and Kikuchi, T.: Local time variation of the
amplitude of geomagnetic sudden commencements (SC) and SC-associated polar
cap potential, Earth Plan. Spa., 61, e13–e16, 2009.
Baker, D. N., Higbie, P. R., Belian, R. D., and Hones Jr., E. W.: Do Jovian
electrons influence the terrestrial outer radiation zone?, Geophys. Res.
Lett., 6, 531–534, https://doi.org/10.1029/GL006i006p00531,
1979.
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and McPherron,
R. L.: Neutral line model of substorms: Past results and present view, J.
Geophys. Res., 101, 12975–13010, 1996.
Baker, D. N., Li, X., Blake, J. B., and Kanekal, S.: Strong electron
acceleration in the Earth's magnetosphere, Adv. Space Res., 21, 609–613,
1998.
Barnes, C. W. and Simpson, J. A.: Evidence for interplanetary acceleration of
nucleons in corotating interaction regions, Astrophys. J., 210, L91–L96, 1976.
Bartels, J.: Terrestrial-magnetic activity in the years 1931 and 1932,
Terrestrial Magnetism and Atmospheric Electricity, 39, 1–4, 1934.
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the
interplanetary medium, 2, J. Geophys. Res., 76, 3534–3563, 1971.
Bieber, J. W., Clem, J., Evenson, P., Pyle, R., Sáiz, A., and Ruffolo,
D.: Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations, Astrophys. J., 771, 92, https://doi.org/10.1088/0004-637X/771/2/92, 2013.
Blake, J. B., Kolasinski, W. A., Filius, R. W., and Mullen, E. G.: Injection of
electrons and protons with energies of tens of MeV into L<3 on
March 24, 1991, Geophys. Res. Lett., 19, 821–824, 1992.
Bombardieri, D. J., Duldig, M. L., Humble, J. E., and Michael, K. J.: An
improved model for relativistic solar proton acceleration applied to the
2005 January 20 and earlier events, Astrophysical J., 682, 1315–1327, 2008.
Boyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B.,
Baker, D. N., Reeves, G. D., and Turner, D. L.: Quantifying the radiation belt
seed population in the March 17, 2013 electron acceleration event, Geophys.
Res. Lett., 41, 2275–2281, https://doi.org/10.1002/2014GL059626,
2014.
Boyd, A. J., Spence, H. E., Huang, C. L., Reeves, G. D., Baker, D. N., Turner,
D. L., Claudepierre, S. G., Fennell, J. F., Blake, J. B., and Shprits, Y. Y.:
Statistical properties of the radiation belt seed population, J. Geophys.
Res., 121, 7636–7646, https://doi.org/10.1002/2016JA022652,
2016.
Bravo, S. and Otaola, J. A.: Polar coronal holes and the sunspot cycle. A
new method to predict sunspot numbers, Sol. Phys., 122, 335,
https://doi.org/10.1007/BF00913000, 1989.
Bravo, S. and Stewart, G. A.: Fast and Slow Wind from Solar Coronal Holes,
Astrophys. J., 489, 992–999, https://doi.org/10.1086/304789,
1997.
Brice, N.: Fundamentals of very low frequency emission generation
mechanisms, J. Geophys. Res., 69, 4515–4522, 1964.
Buzulukova, N.: Extreme Events in Geospace, Origins, Predictability and
Consequences, Elsevier, Wash. DC, 2018.
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R.: Magnetic loop behind
an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys.
Res., 86, 6673–6684, 1981.
Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R. P., and Larson, D. E.: A magnetic cloud
containing prominence material: January, 1997, J. Geophys. Res., 103,
77–285, 1998.
Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical
relationship between interplanetary conditions and Dst, J. Geophys. Res.,
80, 4204–4214, 1975.
Carlson, C. W., McFadden, J. P., Ergun, R. E., Temerin, M., Peria, W.,
Mozer, F. S., Klumpar, D. M., Shelley, E. G., Peterson, W. K., Moebius, E.,
Elphic, R., Strangeway, R., Cattell, C., and Pfaff, R.: FAST observations in
the downward auroral current region: Energetic upgoing electron beams,
parallel potential drops, and ion heating, Geophys. Res. Lett., 25,
2017–2020, 1998.
Carrington, R. C: Description of a singular appearance seen in the Sun on
September 1, 1859, Mon. Not. R. Astron. Soc., XX, 13, 1859.
Chan, A. A., Xia, M., and Chen, L.: Anisotropic Alfvén-ballooning modes
in Earth's magnetosphere, J. Geophys. Res., 99, 17351–17366, 1994.
Chapman, S. and Bartels, J.: Geomagnetism, vol. 1, Oxford Univ. Press, New
York, 1940.
Cho, K. S., Bong, S. C., Moon, Y. J., Dryer, M., Lee, S. E., and Kim, K. H.: An
empirical relationship between coronal mass ejection initial speed and solar
wind dynamic pressure, J. Geophys. Res., 115, A10111, https://doi.org/10.1029/2009JA015139, 2010.
Choe, G. S., LaBelle-Hamer, N., Tsurutani, B. T., and Lee, L. C.:
Identification of a driver gas boundary layer, EOS Trans. AGU, 73, 485,
1992.
Chree, C.: Review of Maunder's recent investigations on the causes of
magnetic disturbances, Terr. Mag., 10, 9–14, 1905.
Chree, C.: Some phenomena of sunspots and of terrestrial magnetism at Kew
Observatory, Philos. T. Roy. Soc. A, 212, 75–116,
1913.
Christon, S. P. and Simpson, J. A.: Separation of corotating nucleon fluxes
from solar flare fluxes by radial gradients and nuclear composition,
Astrophys. J. Lett., 227, L49–L53, 1979.
Clauer, C. R. and Siscoe, G.: The great historical geomagnetic storm of
1859: A modern look, Adv. Space Res. 38, 117–118, https://doi.org/10.1016/j.asr.2006.09.001, 2006.
Cliver, E. W.: The 1859 space weather event: Then and now, Adv. Spa. Res.,
38, 119–129, 2006.
Cornwall, J. M.: Cyclotron instabilities and electromagnetic emission in the
ultra low frequency and very low frequency ranges, J. Geophys. Res., 70,
61–69, https://doi.org/10.1029/JZ070i001p00061, 1965.
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: The terrestrial
ring current: origin, formation and decay, Rev. Geophys., 37, 407–438,
1999.
Dasso, S., Gómez, D., and Mandrini, C. H.: Ring current decay rates of
magnetic storms: A statistical study from 1957 to 1998, J. Geophys. Res.,
107, 1059, https://doi.org/10.1029/2000JA000430, 2002.
Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE and its
universal time variations, J. Geophys. Res., 71, 785–801,
https://doi.org/10.1029/JZ071i003p00785, 1966.
Davis, C. J., de Koning, C. A., Davies, J. A., Biesecker, D., Milward, G.,
Dryer, M., Deehr, C., Webb, D. F., Schenk, K., Freeland, S. L., Mostl, C.,
Farrugia, C. J., and Odstrcil, D.: A comparison of space weather analysis
techniques used to predict the arrival of the Earth-directed CME and its
shock wave launched on 8 April 2010, Space Weather 9, S01005, https://doi.org/10.1029/2010SW000620, 2011.
Deng, Y., Sheng, C., Tsurutani, B. T., and Mannucci, A. J.: Possible influence
of extreme magnetic storms on the thermosphere in the high latitudes, Space
Weather, 16, 802–813, https://doi.org/10.1029/2018SW001847, 2018.
Dessler, A. J. and Parker, E. N.: Hydromagnetic theory of magnetic storms, J.
Geophys. Res., 64, 2239–2252, 1959.
Dryer, M., Smith, Z. K., Steinolfson, R. S., Mihalov, J. D., Wolfe, J. H.,
and Chao, J.-K.: Interplanetary disturbances caused by the August 1972 solar
flares as observed by Pioneer 9, J. Geophys. Res., 81, 4651–4663, https://doi.org/10.1029/JA081i025p04651, 1976.
Dungey, J. W.: Interplanetary magnetic field and the auroral zones, Phys.
Rev. Lett., 6, 47–48, 1961.
Ebihara, Y. and Ejiri, M.: Modeling of solar wind control of the ring
current buildup: A case study of the magnetic storms in April 1997, Geophys.
Res. Lett., 25, 3751–3754, https://doi.org/10.1029/1998GL900006, 1998.
Echer, E., Gonzalez, W. D., Tsurutani, B. T., and Gonzalez, A. L. C.:
Interplanetary conditions causing intense geomagnetic storms (Dst ≤-100
nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221,
https://doi.org/10.1029/2007JA012744, 2008a.
Echer, E., Gonzalez, W. D., and Tsurutani, B. T.: Interplanetary conditions
leading to superintense geomagnetic storms (Dst ≤ −250 nT) during solar
cycle 23, Geophys. Res. Lett., 35, L06S03, https://doi.org/10.1029/2007GL031755, 2008b.
Echer, E., Tsurutani, B. T., and Guarnieri, F. L.: Solar and interplanetary
origins of the November 2004 superstorms, Adv. Spa. Res., 44, 615–620, 2009.
Echer, E., Tsurutani, B. T., Guarnieri, F. L., and Kozyra, J. U.:
Interplanetary fast forward shocks and their geomagnetic effects: CAWSES
events, J. Atmos. Sol.-Terr. Phys., 73, 1330–1338, 2011.
Elkington, S. R., Hudson, M. K., and Chan, A. A.: Acceleration of relativistic
electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF
oscillations, Geophys. Res. Lett., 26, 3273–3276, 1999.
Elkington, S. R., Hudson, M. K., and Chan, A. A.: Resonant acceleration and
diffusion of outer zone electrons in an asymmetric geomagnetic field, J.
Geophys. Res., 108, https://doi.org/10.1029/2001JA009202, 2003.
Elvey, C. T.: Problems in auroral morphology, P. Natl. Acad. Sci. 1957, 43, 63–75, https://doi.org/10.1073/pnas.43.1.63, 1957.
Emery, B. A., Richardson, I. G., Evans, D. S., and Rich, F. J.: Solar wind structure
sources and periodicities of auroral electron power over three solar cycles,
J. Atmos. Sol. Terr. Phys., 71, 1157–1175, https://doi.org/10.1016/j.jastp.2008.08.005, 2009.
Engebretson, M. J., Peterson, W. K., Posch, J. L., Klatt, M. R., Anderson, B. J.,
Russell, C. T., Singer, H. J., Arnoldy, R. L., and Fukunishi, H.: Observations
of two types of Pc 1-2 pulsations in the outer dayside magnetosphere, J.
Geophys. Res., 107, 1415, https://doi.org/10.1029/2001JA000198, 2002.
Falkenberg, T. V., Vrsnak, B., Taktakishvili, A., Odstrcil, D., MacNeice, P., and
Hesse, M.: Investigations of the sensitivity of a coronal mass ejection
model (ENLIL) to solar input parameters, Space Weather, 8, S06004, https://doi.org/10.1029/2009SW000555, 2010.
Firoz, K. A., Gan, W. Q., Moon, Y.-J., and Li, C.: An interpretation of the
possible mechanisms of two ground-level enhancement events, Astrophys. J.,
758, 119, https://doi.org/10.1088/0004-637X/758/2/119, 2012.
Foster, J. C., Wygant, J. R., Hudson, M. K., Boyd, A. J., Baker, D. N., Erikson,
P. J., and Spence, H. E.: Shock-induced prompt relativistic electron
acceleration in the inner magnetosphere, J. Geophys. Res.-Spa. Phys., 120,
1661–1674, https://doi.org/10.1002/2014JA020642, 2015.
Ghosh, T. and Krishnamurti, T. N.: Improvements in hurricane intensity
forecasts from a multimodel superensemble utilizing a generalized neural
network technique, Weath. Forecast., 33, 873–885, https://doi.org/10.1175/WAF-D-17-0006.1, 2018.
Gonzalez, W. D. and Tsurutani, B. T.: Criteria of interplanetary parameters
causing intense magnetic storms (Dst <−100 nT), Planet. Spa. Sci.,
35, 1101–1109, 1987.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G.,
Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J.
Geophys. Res., 99, 5571–5792, 1994.
Gonzalez, W. D., Gonzalez, A. L. C., Dal Lago, A., Tsurutani, B. T., Arballo,
J. K., Lakhina, G. S., Buti, B., Ho, C. M., and Wu, S.-T.: Magnetic cloud field
intensities and solar wind velocities, Geophys. Res. Lett., 25, 963–966,
1998.
Gopalswamy, N.: Coronal mass ejections and their heliospheric consequences,
in: First Asia-Pacific Sol. Phys. Meet, vol. 2, edited by: Choudhuri, A. and
Banerjee, D., Astron. Soc. India Conf. Series, 241–258, 21024 Mrach,
Bengaluru, India, 2011.
Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M., and Howard, R. A.:
Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys.
Res. 106, 29207–29217, 2001.
Gosling, J. T., Bame, S. J., and Feldman, W. C.: Solar wind speed variations: 1962–1974, J. Geophys. Res., 81, 5061–5070, 1976.
Guarnieri, F. L.: The nature of auroras during high-intensity long-duration
continuous AE activity (HILDCAA) events: 1998–2001, in: Recurrent Magnetic
Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167,
edited by: Tsurutani, B. T., McPherron, R., Lu, G., Sobral, J. H. A., and Gopalswamy, N., 235–243, AGU, Washington, DC, 2006.
Guarnieri, F. L., Tsurutani, B. T., Gonzalez, W. D., Echer, E., Gonzalez, A.
L. C., Grande, M., and Soraas, F.: ICME and CIR storms with particular
emphasis on HILDCAA events, ILWS Workshop 2006, Goa, 2006.
Guarnieri, F. L., Tsurutani, B. T., Vieira, L. E. A., Hajra, R., Echer, E., Mannucci, A. J., and Gonzalez, W. D.: A correlation study regarding the AE index and ACE solar wind data for Alfvénic intervals using wavelet decomposition and reconstruction, Nonlin. Processes Geophys., 25, 67–76, https://doi.org/10.5194/npg-25-67-2018, 2018.
Haerendel, G.: Acceleration from field-aligned potential drops, Astrophys.
J. Suppl. Ser., 90, 765–774, 1994.
Hajra, R. and Tsurutani, B. T.: Magnetospheric “killer” relativistic
electron dropouts (REDs) and repopulation: a cyclical process, in: Extreme
Events in Geospace: Origins, Predictability, and Consequences, edited by: Buzulukova, N., 373–400, Elsevier, https://doi.org/10.1016/B978-0-12-812700-1.00014-5, 2018a.
Hajra, R. and Tsurutani, B. T.: Interplanetary shock inducing
magnetospheric supersubstorms (SML <−2500 nT): Unusual auroral
morphologies and energy flow, Astrophys. J., 858, 123, https://doi.org/10.3847/1538-4357/aabaed, 2018b.
Hajra, R., Echer, E., Tsurutani, B. T., and Gonzalez, W. D.: Solar cycle
dependence of high-intensity long-duration continuous AE activity (HILDCAA)
events, relativistic electron predictors?, J. Geophys. Res.-Spa. Phys., 118, 5626–5638,
https://doi.org/10.1002/jgra.50530, 2013.
Hajra, R., Echer, E., Tsurutani, B. T., and Gonzalez, W. D.: Solar
wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and
preceding CIR storms during solar cycle 23, J. Geophys. Res. Spa. Phys.,
119, 2675–2690, 2014a.
Hajra, R., Echer, E., Tsurutani, B. T., and Gonzalez, W. D.: Superposed
epoch analyses of HILDCAAs and their interplanetary drivers: solar cycle and
seasonal dependences, J. Atmos. Sol. Ter. Phys., 121, 24–31, 2014b.
Hajra, R., Tsurutani, B. T., Echer, E., and Gonzalez, W. D.: Relativistic
electron acceleration during high-intensity, long-duration, continuous AE
activity (HILDCAA) events: solar cycle phase dependences, Geophys. Res.
Lett., 41, 1876–1881, 2014c.
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., and Santolik, O.:
Relativistic (E >0.6, >2.0, and >4.0
MeV) electron acceleration at geosynchronous orbit during high-intensity
long-duration continuous AE activity (HILDCAA) events, Ap. J., 799, 39,
https://doi.org/10.1088/0004-637X/799/1/39, 2015a.
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., Brum, C. G. M.,
Vieira, L. E. A., and Santolik, O.: Relativistic electron acceleration
during HILDCAA events: are precursor CIR magnetic storms important?, Earth,
Planet. Space, 67, 109, https://doi.org/10.1186/s40623-015-0280-5, 2015b.
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., and Gjerloev, J. W.:
Supersubstorms (SML <-2500 nT): Magnetic storm and solar cycle
dependences, J. Geophys. Res.-Spa. Phys., 121, 7805–7816, https://doi.org/10.1002/2015JA021835, 2016.
Hajra, R., Tsurutani, B. T., Brum, C. G. M., and Echer, E.: High-speed solar
wind stream effects on the topside ionosphere over Arecibo: a case study
during solar minimum, Geophys. Res. Lett., 44, 7607–7617, https://doi.org/10.1002/2017GL073805, 2017.
Hajra, R., Tsurutani, B. T., and Lakhina, G. S.: The complex space weather
events of September 2017, Astrophys. J., submitted, 2019.
Hale, G. E.: The spectrohelioscope and its work Part III. Solar eruptions and
their apparent terrestrial effects, Astrophys. J., 73, 379–412, 1931.
Halford, A. J., Fraser, B. J., and Morley, S. K.: EMIC wave activity during
geomagnetic storm and nonstorm periods: CRRES results, J. Geophys. Res.,
115, A12248, https://doi.org/10.1029/2010JA015716, 2010.
Halford, A. J., McGregor, S. L., Murphy, K. R., Millan, R. M., Hudson, M. K.,
Woodger, L. A., Cattel, C. A., Breneman, A. W., Mann, I. R., Kurth, W. S.,
Hospodarsky, G. B., Gkioulidou, M., and Fennel, J. F.: BARREL observations of
an ICME-shock impact with the magnetosphere and the resultant radiation belt
electron loss, J. Geophys. Res.-Spa. Phys., 120, 2557–2570, 2015.
Halford, A. J., McGregor, S. L., Hudson, M. K., Milan, R. M., and Kress, B. T.:
BARREL observations of a solar energetic electron and solar energetic proton
event, J. Geophys. Res.-Spa. Phys., 121, 4205–4216, https://doi.org/10.1002/2016JA022462, 2016.
Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken,
B., and Kremser, G.: Ring current development during the great geomagnetic
storm of February 1986, J. Geophys. Res., 93, 14343–14355, https://doi.org/10.1029/JA093iA12p14343, 1988.
Hanslmeier, A.: The Sun and Space Weather, Springer Netherlands, edition 2,
https://doi.org/10.1007/978-1-4020-5604-8, 2007.
Harada, Y., Goto, A., Hasegawa, H., Fujikawa, N., Naoe, H., and Hirooka, T.:
A major stratospheric sudden warming event in January 2009, J. Atmos. Sci.,
67, 2051–2069, https://doi.org/10.1175/2009JAS3320.1, 2010.
Hellinger, P. and Travnicek, P. M.: Oblique proton fire hose instability in
the expanding solar wind: Hybrid simulations, J. Geophys. Res., 113, A10109,
https://doi.org/10.1029/2008JA013416, 2008.
Heppner, J. P.: Note on the occurrence of world-wide SSCs during the onset of
negative bays at College, Alaska, J. Geophys. Res., 60, 29–32, 1955.
Hodgson, R.: On a curious appearance seen in the Sun, Mon. Not. R. Astron.
Soc., XX, 15, 1859.
Hollweg, J. V.: The solar wind: Then and now, in: Recurrent Magnetic Storms:
Corotating Solar Wind Streams (Vol. 167, pp. 19–27), edited by:
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Sobral, J. H. A., and
Gopalswamy, N., AGU Press, Wash DC, 2006.
Hones Jr., E. W.: Transient phenomena in the magnetotail and their relation
to substorms, Spa. Sci. Rev., 23, 393–410, 1979.
Horne, R. B. and Thorne, R. M.: Potential waves for relativistic electron
scattering and stochastic acceleration during magnetic storms, Geophys. Res.
Lett., 25, 3011–3014, https://doi.org/10.1029/98GL01002, 1998.
Huba, J. D., Joyce, G., and Fedder, J. A.: Sami2 is another model of the
ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res.,
105, 23035–23053, 2000.
Huba, J. D., Dymond, K. F., Joyce, G., Budzien, S. A., Thonnard, S. E., Fedder,
J. A., and McCoy, R. P.: Comparison of O+ density from ARGOS LORAAS data
analysis and SAMI2 model results, Geophys. Res. Lett., 29, 6-1,
https://doi.org/10.1029/2001GL013089, 2002.
Hudson, M. K., Elkington, S. R., Lyon, J. G., Goodrich, C. C., and Rosenberg,
T. J.: Simulations of radiation belt dynamics driven by solar wind
variations, in: Sun-Earth Plasma Connections, edited by: Burch, J.,
Carovillano, R. L., and Antiochos, S. K., Amer. Geophys. Un. Press, Wash. DC, 171,
1999.
Illing, R. M. E. and Hundhausen, A. J.: Disruption of a coronal streamer by an
eruptive prominence and coronal mass ejection, J. Geophys. Res., 91,
10951–10960, 1986.
Inan, U. S., Bell, T. F., and Helliwell, R. A.: Nonlinear pitch angle
scattering of energetic electrons by coherent VLF waves in the
magnetosphere, J. Geophys. Res., 83, 3235–3253, 1978.
Iyemori, T.: Storm-time magnetspheric currents inferred from midlatitude
geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249–1265, 1990.
Jackson, B. V., Odstrcil, D., Yu, H. S., Hick, P. P., Buffington, A.,
Mejia-Ambriz, J. C., Kim, J., Hong, S., Kim, Y., Han, J., and Tokumaru, M.:
The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3-D MHD
prediction model, Space Weather, 13, 104–115, 2015.
Jian, L. K., MacNeice, P. J., Taktakishvili, A., Odstrcil, D., Jackson, B.,
Yu, H. S., Riley, P., Sokolov, I. V., and Evans, R. M.: Validation of solar
wind prediction at Earth: Comparison of coronal and heliospheric models
installed at the CCMC, Space Weather, 13, 316–338, 2015.
Jian, L. K., MacNeice, P. J., Mays, M. L., Taktakishvili, A., Odstrcil, D.,
Jackson, B., Yu, H. S., Riley, P., and Sokolov, I. V.: Validation for global
solar wind prediction using Ulysses comparison: Multiple coronal and
heliospheric models installed at the Community Coordinated Modeling Center,
Space Weather, 14, 592–611, 2016.
Jordanova, V. K., Farrugia, C. J., Janoo, L., Quinn, J. M., Torbert, R. B.,
Ogilvie, K. W., and Belian, R. D.: October 1995 magnetic cloud and
accompanying storm activity: Ring current evolution, J. Geophys. Res., 103,
79–92, https://doi.org/10.1029/97JA02367, 1998.
Joselyn, J. A. and Tsurutani, B. T.: Geomagnetic sudden impulses and storm
sudden commencements, A note of terminology, EOS, 71, 1808–1809, 1990.
Kellerman, A. C. and Shprits, Y. Y.: On the influence of solar wind
conditions on the outher-electron radiation belts, J. Geophys. Res., 117,
A05127, https://doi.org/10.1029/2011JA017253, 2012.
Kellerman, A. C., Shprits, Y. Y., Kondrashov, D., Subbotin, D., Makarevich,
R. A., Donovan, E., and Nagal, T.: Three-dimensional data assimilation and
reanalysis of radiation belt electrons: Observations of a four-zone
structure using five spacecraft and the VERB code, J. Geophys. Res.-Spa.
Phys., 119, 8764–8783, https://doi.org/10.1002/2014JA020171, 2014.
Kelley, M. C., Fejer, B. G., and Gonzales, C. A.: An explanation for anomalous
equatorial ionospheric electric field associated with a northward turning of
the interplanetary magnetic field, Geophys. Res. Lett., 6, 301–304, 1979.
Kelley, M. C., Makela, J. J., Chau, J. L., and Nicolls, M. J.: Penetration of
the solar wind electric field into the magnetsphere/ionosphere system,
Geophys. Res. Lett., 30, 1158, https://doi.org/10.1029/2002GL016321, 2003.
Kennel, C. F. and Petschek, H. E.: Limit of stably trapped particle fluxes,
J. Geophys. Res., 71, 1–28, 1966.
Kennel, C. F., Edmiston, J. P., and Hada, T.: A quarter century of
collisionless shock research in Collisionless Shocks in the Heliosphere: A
Tutorial Review, Geophys. Mon. Ser., vol. 34, 1, AGU, Wash. DC, 1985.
Kikuchi, T. and Hashimoto, K. K.: Transmission of the electric fields to the
low latitude ionosphere in the magnetosphere-ionosphere current circuit,
Geosci. Lett., 3, 4, https://doi.org/10.1186/s40562-016-0035-6,
2016.
Kim, R. S., Cho, K. S., Moon, Y. J., Dryer, M., Lee, J., Yi, Y., Kim, K. H.,
Wang, H., Park, Y. D., and Kim, Y. H.: An empirical model for prediction of
geomagnetic storms using initially observed CME parameters at the Sun, J.
Geophys. Res., 115, A12108, https://doi.org/10.1029/2010JA015322, 2010.
Kim, R. S., Moon, Y. J., Gopalswamy, N., Park, Y. D., and Kim, Y. H.: Two-step
forecast of geomagnetic storm using coronal mass ejection and solar wind
condition, Space Weather, 12, 246–256, https://doi.org/10.1002/2014SW001033, 2014.
Kimball, D. S.: A study of the aurora of 1859, Sci. Rept. 6, UAG-R109, Univ.
of Alaska, Fairbanks, Alaska, 1960.
Klein, L. W. and Burlaga, L. F.: Interplanetary magnetic clouds at 1 AU, J.
Geophys. Res., 87, 613–624, 1982.
Knipp, D. J., Hapgood, M. A., and Welling, D.: Communicating uncertainty and
reliability in space weather data, models, and applications, Space Weather,
16, 1453–1454, https://doi.org/10.1029/2018SW002083, 2018.
Koskinen, H.: Physics of Space Storms: From the Solar Surface to the Earth,
Springer-Verlag, Berlin, Edition 1, https://doi.org/10.1007/978-3-642-00319-6, 2011.
Kozyra, J. U., Jordanova, V. K., Horne, R. B., and Thorne, R. M.: Modeling of
the contribution of electromagnetic ion cyclotron (EMIC) waves to stormtime
ring current erosion, in: Magnetic Storms, Geophys. Mon. Ser., 98, edited by:
Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K., 187–202, 1997.
Kozyra, J. U., Liemohn, M. W., Clauer, C. R., Ridley, A. J., Thomsen, M. F.,
Borovsky, J. E., Roeder, J. L., Jordanova, V. K., and Gonzalez, W. D.:
Multistep Dst development and ring current composition changes during the
4–6 June 1991 magnetic storm, J. Geophys. Res., 107, 1224, https://doi.org/10.1029/2001JA000023, 2002.
Kozyra, J. U., Nagy, A. F., and Slater, D. W.: High-altitude energy source(s) for
stable auroral red arcs, Rev. Geophys., 35, 155–190, 2006a.
Kozyra, J. U., Crowley, G., Emery, B. A., Fang, X., Maris, G., Mlynczak, M.
G., Niciejewski, R. J., Palo, S. E., Paxton, L. J., Randal, C. E., Rong, P.
P., III Russell, J. M., Skinner, W., Solomon, S. C., Talaat, E. R., Wu, Q.,
and Yee, J. H.: Response of the upper/middle atmosphere to coronal holes and
powerful high-speed solar wind streams in 2003, in: Recurrent Magnetic
Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167,
edited by: Tsurutani, B. T., McPherron, R., Lu, G., Sobral, J. H. A., and Gopalswamy, N., 319 pp., AGU, Washington, DC, https://doi.org/10.1029/167GM24, 2006b.
Kozyra, J. U., Manchester IV, W. B., Escoubet, C. P., Lepri, S. T., Liemohn, M. W., Gonzalez, W. D., Thomsen, M. W., and Tsurutani, B. T.: Earth's collision
with a solar filament on 21 January 2005: Overview, J. Geophys. Res.-Spa.
Phys., 118, 5967–5978, https://doi.org/10.1002/jgra.50567, 2013.
Krieger, A. S., Timothy, A. F., and Roelof, E. C.: A coronal hole and its
identification as the source of a high velocity solar wind stream, Sol.
Phys. 23, 505–525, 1973.
Lakhina, G. S.: Magnetic reconnection, Bull. Astr. Soc. India, 28, 593–646,
2000.
Lakhina, G. S. and Tsurutani, B. T.: Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms, Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, 2017.
Lakhina, G. S. and Tsurutani, B. T.: Supergeomagnetic storms: Past, present
and future, Chapter 7 in: Extreme Events in Geospace, 157, edited by:
Buzulokova, N., Elsevier, 2018.
Lakhina, G. S., Alex, S., Tsurutani, B. T., and Gonzalez, W. D.: Supermagnetic
storms: Hazards to society, in Extreme Events and Natural Hazards: The
Complexity Perspective, Geophys. Mon., 196, 267–278, 2012.
Lam, M. M., Chisham, G., and Freeman, M. P.: The interplanetary magnetic field
influences mid-latitude surface atmospheric pressure, Environ. Res. Lett., 8, 045001,
https://doi.org/10.1088/1748-9326/8/4/045001, 2013.
Lario, D.: Estimation of the solar flare neutron worst-case fluxes and
fluences for missions traveling close to the Sun, Space Weather, 10, S03002,
https://doi.org/10.1029/2011SW000732, 2012.
Leamon, R. J., Canfield, R. C., Jones, S. L., Lambkin, K., Lundberg, B. J., and
Pevtsov, A. A.: Helicity of magnetic clouds and their associated active
regions, J. Geophys. Res., 109, A05106, https://doi.org/10.1029/2003JA010324, 2004.
Lee, K. H.: Generation of parallel and quasi-perpendicular EMIC waves and
mirror waves by fast magnetosonic shocks in the solar wind, J. Geophys.
Res., 122, 7307–7322, 2017.
Lepri, S. T. and Zurbuchen, T. H.: Directo observational evidence of filament
material within interplanetary coronal mass ejections, Astrophys. J. Lett.,
723, L22–L27, https://doi.org/10.1088/2041-8205/723/1/L22,
2010.
Li, X., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J. B.:
Simulation of the prompt energization and transport of radiation belt
particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20,
2423–2426, 1993.
Li, X., Baker, D. N., Temerin, M., Reeves, G., Friedel, R., and Shen, C.:
Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: their
responses to solar wind variations, Space Weather, 3, S04001, https://doi.org/10.1029/2004SW000105, 2005.
Li, X., Temerin, M., Tsurutani, B. T., and Alex, S.: Modeling of 1-2
September 1859 super magnetic storm, Adv. Space Res., 38, 273–279,
https://doi.org/10.1016/j.asr.2005.06.070, 2006.
Li, X.-L., Temerin, M., Baker, D. N., Reeves, G. D., and Larson, D.:
Quantitative prediction of radiation belt electrons at geostationary orbit
based on solar wind measurements, Geophys. Res. Lett., 28, 1887–1890, 2001.
Lui, A. T. Y.: Current disruption in the Earth's magnetosphere: Observations
and models, J. Geophys. Res., 101, 13067–13088, https://doi.org/10.1029/96JA00079, 1996.
Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H.-K., and Winske, D.: A
cross-field current instability for substorm expansions, J. Geophys. Res.,
96, 11389–11401, 1991.
Luhmann, J. G., Mays, M. L., Odstrcil, D., Li, Y., Bain, H., Lee, C. O.,
Galvin, A. B., Mewaldt, R. A., Cohen, C. M. S., Leske, R. A., Larson, D., and
Futaana, Y.: Modeling solar energetic particle events using ENLIL
heliosphere simulations, Space Weather, 15, 934–954, 2017.
Maliniemi, V., Asikainen, T., and Mursula, K.: Spatial distribution of
Northern Hemisphere winter temperature during different phases of the solar
cycle, J. Geophys. Res.-Atmos., 119, 9752–9764, https://doi.org/10.1002/2013JD021343, 2014.
Manchester IV, W. B., Ridley, A. J., Gombosi, T. I., and Dezeeuw, D. L.:
Modeling the Sun-to-Earth propagation of a very fast CME, Adv. Space Res.,
38, 253–262, 2006.
Mann, I. R., O'Brien, T. P., and Milling, D. K.: Correlations between ULF wave
power, solar wind speed, and relativistic electron flux in the
magnetosphere: solar cycle dependence, J. Atmos. Sol.-Terr. Phys., 66,
187–198, 2004.
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Konjathy, A., Saito, A.,
Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U., and Skoug, R.: Dayside global
ionospheric response to the major interplanetary events of October 29–30,
2003 “Halloween storms”, Geophys. Res. Lett., 32, L12S02, https://doi.org/10.1029/2004GL021467, 2005.
Mannucci, A. J., Tsurutani, B. T., Abdu, M. A., Gonzalez, W. D., Komjathy, A.,
Echer, E., Iijima, B. A., Crowley, G., and Anderson, D.: Superposed epoch
analysis of the dayside ionospheric response to four intense geomagnetic
storms, J. Geophys. Res., 113, A00A02, https://doi.org/10.1029/2007JA012732, 2008.
Marques de Souza, A., Echer, E., Bolzan, M. J. A., and Hajra, R.: Cross-correlation and cross-wavelet analyses of the solar wind IMF Bz and auroral electrojet index AE coupling during HILDCAAs, Ann. Geophys., 36, 205–211, https://doi.org/10.5194/angeo-36-205-2018, 2018.
Matteini, L., Landi, S., Hellinger, P., and Velli, M.: Parallel proton fire
hose instability in the expanding solar wind: Hybrid simulations, J.
Geophys. Res., 111, A10101, https://doi.org/10.1029/2006JA011667, 2006.
Matteini, L., Landi, S., Hellinger, P., Pantellini, F. G., Maksimovic, M.,
Velli, M., Goldstein, B. E., and Marsch, E.: The evolution of the solar wind proton temperature
anisotropy from 0.3 to 2.5 AU, Geophys. Res. Lett., 34, L20105, https://doi.org/10.1029/2007GL030920, 2007.
Maunder, E. W.: Magnetic Disturbances, 1882 to 1903, as recorded at the
Royal Observatory, Greenwich, and their Association with Sun-spots, Monthly
Notices of the Royal Astronomical Society, 65, 2–18, https://doi.org/10.1093/mnras/65.1.2, 1904.
Mays, M. L., Thompson, B. J., Jian, L. K., Colaninno, R. C., Odstrcil, D.,
Mostl, C., Temmer, M., Savani, N. P., Collinson, G., Taktakishvili, A.,
MacNeice, P. J., and Zheng, Y.: Propagation of the 2014 January 7 CME and resulting geomagnetic non-event, Astrophys J., 812, 145, https://doi.org/10.1088/0004-637X/812/2/145, 2015.
McDonald, F. B., Teegarden, B. J., Trainor, J. H., Von Rosenvinge, T. T., and
Webber, W. R.: The interplanetary acceleration of energetic nucleons,
Astrophys. J. Lett., 203, L149–L154, 1976.
Mendes, O., Domingues, M. O., Echer, E., Hajra, R., and Menconi, V. E.: Characterization of high-intensity, long-duration continuous auroral activity (HILDCAA) events using recurrence quantification analysis, Nonlin. Processes Geophys., 24, 407–417, https://doi.org/10.5194/npg-24-407-2017, 2017.
Meng, X., Tsurutani, B. T., and Mannucci, A. J.: The solar and interplanetary
causes of superstorms (minimum Dst 250 nT) during the space age,
J. Geophysi. Res., 124, 3926–3948, https://doi.org/10.1029/2018JA026425,
2019a.
Meredith, N. P., Horne, R. B., Iles, R. H. A., Thorne, R. M., Heynderickx, D.,
and Anderson, R. R: Outer zone relativistic electron acceleration associated
with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107,
1144, https://doi.org/10.1029/2001JA900146, 2002.
Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of
cosmic-ray increase in AD 774–775 from tree rings in Japan, Nature Lett., 486, 240–242
https://doi.org/10.1038/nature11123, 2012.
Miyoshi, Y., Jordanova, V. K., Morioka, A., and Evans, D. S.: Solar cycle
variations of the electron radiation belts: Observations and radial
diffusion simulation, Space Weather, 2, S10S02, https://doi.org/10.1029/2004SW000070, 2004.
Monreal MacMahon, R. and Llop-Romero, C.: Ring current decay time model during geomagnetic storms: a simple analytical approach, Ann. Geophys., 26, 2543–2550, https://doi.org/10.5194/angeo-26-2543-2008, 2008.
Mostl, C., Rollett, T., Frahm, R. A., Liu, Y. D., Long, D. M., Colaninno, R. C.,
Reiss, M. A., Temmer, M., Farrugia, C. J., Posner, A., Dumbovic, M., Janvier,
M., Demoulin, P., Boakes, P., Devos, A., Kraaikamp, E., Mays, M. L., and
Vrsnak, B.: Strong coronal channeling and interplanetary evolution of a
solar storm up to Earth and Mars, Nat. Comm., 6, 7135, https://doi.org/10.1038/ncomms8135, 2015.
Newton, H. W.: Solar flares and magnetic storms, Mon. Not. R. Astron. Soc.,
103, 244–257, 1943.
Ngwira, C. M., Pulkkinen, A., Kuznetsova, M. M., and Glocer, A.: Modeling
extreme “Carrington-type” space weather events using three dimensional
global MHD simulations, J. Geophys. Res.-Spa. Phys. 119, 4456–4474,
https://doi.org/10.1002/2013JA019661, 2014.
Ngwira, C. M., Pulkkinen, A., Kuznetsova, M. M., and Glocer, A.: Reply to
comments by Tsurutani et al. on “Modeling extreme `Carrington-type' space
weather events using three-dimensional global MHD simulations”, J. Geophys.
Res., 123, 1393–1395, https://doi.org/10.1002/2017JA024928,
2018.
Nishida, A.: Coherence of geomagnetic DP2 fluctuations with interplanetary
magnetic variations, J. Geophys. Res., 73, 5549–5559, 1968.
Nishida, A.: Geomagnetic Diagnosis of the Magnetosphere, Springer-Verlag,
New York, 1978.
Nishida, A. and Jacobs, J. A.: Equatorial enhancement of world-wide changes,
J. Geophys. Res., 67, 4937–4940, 1962.
Nishiura, M., Yoshida, Z., Saitoh, H., Yano, Y., Kawazura, Y., Nogami, T.,
Yamasaki, M., Mushiake, T., and Kashyap, A.: Improved beta (local beta
>1) and density in electron cyclotron resonance heating on the
RT-1 magnetosphere plasma, Nuc. Fus., 55, 053019, https://doi.org/10.1088/0029-5515/55/5/053019, 2015.
Obayashi, T.: The interaction of solar plasma with geomagnetic field,
disturbed conditions, in: Sol. Terr. Phys., edited by: King, J. W. and
Newman, W. S., 107 pp., Academic Press, London, 1967.
O'Brien, T. P. and McPherron, R. L.: An empirical phase space analysis of
ring current dynamics: Solar wind control of injection and decay, J.
Geophys. Res., 105, 7707–7719, https://doi.org/10.1029/1998JA000437, 2000.
O'Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., and
Singer, H. J.: Which magnetic storms produce relativistic electrons at
geosynchronous orbit?, J. Geophys. Res., 106, 15533–15544, 2001.
Odstrcil, D. and Pizzo, V. J.: Three-dimensional propagation of coronal mass
ejections (CMEs) in a structured solar wind flow 1. CME launched within the
streamer belt, J. Geophys. Res., 104, 483–492, 1999a.
Odstrcil, D. and Pizzo, V. J.: Three-dimensional propagation of coronal mass
ejections (CMEs) in a structured solar wind flow 2. CME launched adjacent to
the streamer belt, J. Geophys. Res., 104, 493–503, 1999b.
Olsen, J. V. and Lee, L. C.: PC1 wave generation by sudden impulses, Planet.
Space Sci., 31, 295–302, 1983.
Palmerio, E., Kilpua, E. K. J., Mostl, C., Bothmer, V., James, A. W., Green,
L. M., Isavnin, A., Davies, J. A., and Harrison, R. A.: Coronal magnetic
structure of earthbound CMEs and in situ comparison, Space Weather, 16,
442–460, 2018.
Pérez-Peraza, J., Vashenyuk, E. V., Miroshnichenko, L. I., Balabin, Yu.
V., and Gallegos-Cruz, A.: Impulsive, stochastic, and shock wave
acceleration of relativistic protons in large solar events of 1989 September
29, 2000 July 14, 2003 October 28, and 2005 January 20, Astrophys. J., 695,
865-873, 2009.
Perreault, P. and Akasofu, S. I.: A study of geomagnetic storms,
Geophys. J. Int., 54, 547–573, https://doi.org/10.1111/j.1365-246X.1978.tb05494.x, 1978.
Pesses, M. E., Van Allen, J. A., and Goertz, C. K.: Energetic protons
associated with interplanetary active regions 1–5 AU from the sun, J.
Geophys. Res., 83, 553–562, 1978.
Pesses, M. E, Tsurutani, B. T., Van Allen, J. A., and Smith, E. J.: Acceleration
of energetic protons by interplanetary shocks, J. Geophys. Res., 84, 7297–7301,
1979.
Phillips, J. L., Bame, S. J., Feldman, W. C., Goldstein, B. E., Gosling, J. T.,
Hammond, C. M., McComas, D. J., Neugebauer, M., Scime, E. E., and Suess, S. T.:
Ulysses solar wind plasma observations at high southerly latitudes, Science,
268, 1030–1033, 1995.
Pizzo, V. J., Koning, C., Cash, M., Millward, G., Biesecker, D. A., Puga, L.,
Codrescu, M., and Odstrcil, D.: Theoretical basis for operational ensemble
forecasting of coronal mass ejections, Space Weather, 13, 676–697, https://doi.org/10.1002/2015SW001221, 2015.
Rae, I. J., Murphy, K. R., Watt, C. E. J., Halford, A. J., Mann, I. R., Ozeke,
L. G., Sibeck, D. G., Clilverd, M. A., Rodger, C. J., Degeling, A. W., Forsyth,
C., and Singer, H. J.: The role of localized compressional ultra-low frequency
waves in energetic electron precipitation, J. Geophys. Res., 123, 1900–1914,
https://doi.org/10.1002/2017JA024674, 2018.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F.,
Codrescu, M., Nakajima, H., and Russell, J. M.: Energetic particle
precipitation effects on the Southern Hemisphere stratosphere in 1992–2005,
J. Geophys. Res., 112, D08308, https://doi.org/10.1029/2006JD007696, 2007.
Randall, C. E., Harvey, V. L., Siskind, D. E., France, J., Bernath, P. F.,
Boone, C. D., and Walker, K. A.: NOx descent in the Arctic middle atmosphere
in early 2009, Geophys. Res. Lett., 36, L18811, https://doi.org/10.1029/2009GL039706, 2009.
Reames, D. V.: Particle acceleration at the Sun and in the heliosphere, Spa.
Sci. Rev., 90, 413–491, 1999.
Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W.,
Funsten, H. O., Baker, D. N., Kanekal, S. G., Blake, J. B., Fennell, J. F.,
Claudepierre, S. G., Thorne, R. M., Turner, D. L., Kletzing, C. A., Kurth, W. S.,
Larsen, B. A., and Niehof, J. T.: Electron acceleration in the heart of the
Van Allen radiation belts, Science, 341, 991–994, https://doi.org/10.1126/science.1237743, 2013.
Reeves, G. D., Friedel, R. H. W., Larsen, B. A., Skoug, R. M., Funsten, H. O.,
Claudepierre, S. G., Fennell, J. F., Turner, D. L., Denton, M. H., Spence, H. E.,
Blake, J. B., and Baker, D. N.: Energy dependent dynamics of keV to MeV
electrons in the inner zone, outer zone, and slot regions, J. Geophys. Res.,
121, 397–412, https://doi.org/10.1002/2015JA021569, 2016.
Reikard, G.: Forecasting geomagnetic activity at monthly and annual
horizons: Time series models, J. Atmos. Sol.-Terr. Phys., 133, 111–120,
2015.
Reikard, G.: Forecasting space weather over short horizons: Revised and
updated estimates, New Astron., 62, 62–69, 2018.
Remya, B., Tsurutani, B. T., Reddy, R. V., Lakhina, G. S., and Hajra, R.:
Electromagnetic cyclotron waves in the dayside subsolar outer magnetosphere
generated by enhanced solar wind pressure: EMIC wave coherency, J. Geophys.
Res.-Spa. Phys., 120, 7536–7551, https://doi.org/10.1002/2015JA021327, 2015.
Riley, P., Caplan, R. M., Giacalone, J., Lario, D., and Liu, Y.: Properties
of the fast forward shock driven by the 2012 July 23 extreme coronal mass
ejection, Astrophys. J., 819, 57, https://doi.org/10.3847/0004-637X/819/1/57, 2016.
Ruiz, J., Saulo, C., and Kalnay, E.: Comparison of methods used to generate
probabilistic quantitative precipitation forecasts over South America,
Weath. Forecast., 24, 319–336, https://doi.org/10.1175/2008WAF2007098.1, 2009.
Saikin, A. A., Zhang, J.-C., Smith, C., Spence, H. E., Torbert, R. B., and
Kletzing, C. A.: The dependence on geomagnetic conditions and solar wind
dynamic pressure of the spatial distributions of EMIC waves observed by the
Van Allen Probes, J. Geophys. Res.-Spa. Phys., 121, 4362–4377, https://doi.org/10.1002/2016JA022523, 2016.
Saitoh, H., Yano, Y., Yoshida, Z., Nishiura, M., Morikawa, J., Kawazura, Y.,
Nogami, T., and Yamasaki, M.: Observation of a new high-β and
high-density state of a magnetospheric plasma in RT-1, Phys. Plas., 21,
082511, https://doi.org/10.1063/1.4893137, 2014.
Saldanha, R., Krucker, S., and Lin, R. P.: Hard x-ray spectral evolution and
production of solar energetic particle events during the January 2005
x-class flares, Astrophys. J., 673, 1169–1173, 2008.
Savani, N. P., Vourlidas, A., Szabo, A., Mays, M. L., Richardson, I. G.,
Thompson, B. J., Pulkkinen, A., Evans, R., and Nieves-Chinchilla, T.: Predicting
the magnetic vectors within coronal mass ejections arriving at Earth: 1.
Initial architecture, Space Weather, 13, 374–385, https://doi.org/10.1002/2015SW001171, 2015.
Savani, N. P., Vourlidas, A., Richardson, I. G., Szabo, A., Thompson, B. J.,
Pulkkinen, A., Mays, M. L., Nieves‐Chinchilla, T., and Bothmer, V.: Predicting the magnetic vectors within coronal mass
ejections arriving at Earth: 2. Geomagnetic response, Space Weather, 15,
441–461, https://doi.org/10.1002/2016SW001458, 2017.
Scherhag, R.: Stratospheric temperature changes and the associated changes
in pressure distribution, J. Meteor., 17, 575, https://doi.org/10.1175/1520-0469(1960)017<0575:STCATA>2.0.CO;2, 1960.
Schrijver, C. J., Beer, J., Baltensperger, U., Cliver, E. W., Güdel, M.,
Hudson, H. S., McCracken, K. G., Osten, R. A., Peter, T., Soderblom, D. R.,
Usoskin, I. G., and Wolff, E. W.: Estimating the frequency of extremely
energetic solar events, based on solar, stellar, lunar, and terrestrial
records, J. Geophys. Res., 117, A08103, https://doi.org/10.1029/2012JA017706, 2012.
Schrijver, C. J., Kauristie, K., Aylward, A. D., Denardini, C. M., Gibson,
S. E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D.,
Jakowski, N., Kalegaev, V. V., Lapenta, G., Linker, J. A., Liu, S., Mandrini,
C. H., Mann, I. R., Nagatsuma, T., Nandy, D., Obara, T., O'Brien, T. P.,
Onsager, T., Opgenoorth, H. J., Terkildsen, M., Valladares, C. E., and Vilmer, N.:
Understanding space weather to shield society: A global road map for
2015–2025 commissioned by COSPAR and ILWS, Adv. Spa. Res., 55, 2745–2807,
2015.
Sckopke, N.: A general relation between the energy of trapped particles and
the disturbance field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966.
Sharma, S., Kamide, Y., and Lakhina, G. S. (Eds.): Storm-Substorm
Relationship, Amer. Geophys. Un. Press, Wash. DC, 142, 2004.
Sheeley Jr., N. R., Harvey, J. W., and Feldman, W. C.: Coronal holes, solar
wind streams and recurrent geomagnetic disturbances: 1973–1976, Sol. Phys.,
49, 271–278, 1976.
Sheeley Jr., N. R., Asbridge, J. R., Bame, S. J., and Harvey, J. W.: A pictoral
comparison of interplanetary magnetic field polarity, solar wind speed and
geomagnetic disturbance index during the sunspot cycle, Sol. Phys., 52, 485,
1977.
Simpson, J. A., Lentz, G. A., McKibben, R. B., O'Gallagher, J. J., Schroeder,
W., and Tuzzolino, A. J.: Preliminary documentation for the University of
Chicago charged particle instrument data from the Pioneer 10.11 spacecraft
as submitted to NASA NSSDG, NSSDC Doc. B., GSFC, Greenbelt, Md, 1974.
Siscoe, G. L.: A quasi-self-consistent axially symmetric model for the
growth of a ring current through earthward motion from a pre-storm
configuration, Planet. Spa. Sci., 27, 285–295, 1979.
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and
corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res.
Lett., 3, 137–140, 1976.
Smith, E. J., Connor, B. V., and Foster Jr., G. T.: Measuring the magnetic
fields of Jupiter and the outer solar system, IEE Trans. Magn., MAG-11, 962,
1975.
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the
interplanetary sector structure up to heliographic latitudes of
16∘: Pioneer 11, J. Geophys. Res., 83, 717–723, 1978.
Soraas, F., Aarsnes, K., Oksavik, K., Sandanger, M. I., Evans, D. S., and
Greer, M. S.: Evidence for particle injection as the case of Dst reduction
during HILDCAA events, J. Atmos. Sol.-Terr. Phys., 66, 177–187, 2004.
Souza, A. M., Echer, E., Bolzan, M. J. A., and Hajra, R.: A study on the
main periodicities in interplanetary magnetic field Bz component and
geomagnetic AE index during HILDCAA events using wavelet analysis, J. Atmos.
Sol. Terr. Phys., 149, 81–86, 2016.
Srivastava, N.: A logistic regression model for predicting the occurrence of intense geomagnetic storms, Ann. Geophys., 23, 2969–2974, https://doi.org/10.5194/angeo-23-2969-2005, 2005.
Stern, D. P.: The motion of a proton in the equatorial magnetosphere, J.
Geophys. Res., 80, 595–599, 1975.
Suess, S. and Tsurutani, B. T. (Ed.): From the Sun: Auroras, Magnetic
Storms, Solar Flares, Cosmic Rays, AGU monograph, Wash. DC, 1998.
Sugiura, M.: Hourly values of equatorial Dst for the IGY, Annual
International Geophysical Year, vol. 35, Pergamon, New York, p. 9, 1964.
Summers, D., Ni, B., and Meredith, N. P.: Timescale for radiation belt
electron acceleration and loss due to resonant wave-particle interactions:
2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron
waves, J. Geophys. Res., 112, A04207, https://doi.org/10.1029/2006JA011993, 2007.
Tan, B.: Small-scale microwave bursts in long-duration solar flares,
Astrophys. J., 773, 165, https://doi.org/10.1088/0004-637X/773/2/165, 2013.
Thomson, N. R., Rodger, C. J., and Clilverd, M. A.: Large solar flares and
their ionospheric D region enhancements, J. Geophys. Res., 110, A06306,
https://doi.org/10.1029/2005JA011008, 2005.
Tang, F., Tsurutani, B. T., Gonzalez, W. D., Akasofu, S. I., and Smith, E. J.:
Solar sources of interplanetary southward Bz events responsible for major
magnetic storms (1978–9), J. Geophys. Res., 94, 3535–3541, 1989.
Thorne, R. M., Smith, E. J., Fiske, K. J., and Church, S. R.: Intense variation
of ELF hiss and chorus during isolated substorms, Geophys. Res. Lett., 1,
193–196, https://doi.org/10.1029/GL001i005p00193, 1974.
Thorne, R. M., O'Brien, T. P., Shprits, Y. Y., Summers, D., and Horne, R. B.:
Timescale for MeV electron microburst loss during geomagnetic storms, J.
Geophys. Res., 110, A09202, https://doi.org/10.1029/2004JA010882, 2005.
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N.,
Spence, H. E., Reeves, G. D., Henderson, M. G., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., Blake, J. B., Fennell, J. F., Claudepierre, S. G., and
Kanekal, S. G.: Rapid local acceleration of relativistic radiation-belt
electrons by magnetospheric chorus, Nature, 504, 411–414, 2013.
Thomson, N. R., Rodger, C. J., and Dowden, R. L.: Ionosphere gives the size of
the greatest solar flare, Geophys. Res. Lett., 31, L06803, https://doi.org/10.1029/2003GL019345, 2004.
Tinsley, B. A. and Deen, G. W.: Apparent tropospheric response to MeV-GeV
particle flux variations: A connection via electrofreezing of supercooled
water in high-level clouds?, J. Geophys. Res., 96, 22283, https://doi.org/10.1029/91JD02473, 1991.
Tsurutani, B. T.: Solar/interplanetary plasma phenomena causing geomagnetic
activity at Earth, in: Proc. Inter. Sch. Phys. “Enrico Fermi” Course CXLII,
edited by: Coppi, B., Ferrari, A., and Sindoni, E., IOS Press, Amsterdam, 273,
2000.
Tsurutani, B. T. and Gonzalez, W. D.: The cause of high-intensity
long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén
wave trains, Planet. Space Sci., 35, 405–412, 1987.
Tsurutani, B. T. and Gonzalez, W. D.: The causes of geomagnetic storms during
solar maximum, EOS, 75, 49–56, 1994.
Tsurutani, B. T. and Lakhina, G. S.: Some basic concepts of wave-particle
interactions in collisionless plasmas, Rev. Geophys., 35, 491–502, 1997.
Tsurutani, B. T. and Lakhina, G. S.: An extreme coronal mass ejection and
consequences for the magnetosphere and Earth, Geophys. Res. Lett., 41, 287–292,
https://doi.org/10.1002/2013GL058825, 2014.
Tsurutani, B. T. and Lin, R. P.: Acceleration of >47 keV ions and
>2 keV electrons by interplanetary shocks at 1 AU, J. Geophys.
Res., 90, 1–11, 1985.
Tsurutani, B. T. and Smith, E. J.: Postmidnight chorus: A substorm
phenomenon, J. Geophys. Res., 79, 118–127, 1974.
Tsurutani, B. T., Smith, E. J., West Jr., H. I., and Buck, R. M.: Chorus,
energetic electrons and magnetospheric substorms, in: Wave Instabilities in
Space Plasmas, edited by: Palmadesso, P. J. and Papadopoulos, K., 55, vol 74, Springer, Dordrecht, 1979.
Tsurutani, B. T., Smith, E. J., Pyle, K. R., and Simpson, J. A.: Energetic
protons accelerated at corotating shocks: Pioneer 10 and 11 observations
from 1 to 6 AU, J. Geophys. Res., 87, 7389–7404, 1982.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I., and Smith, E. J.:
Origin of interplanetary southward magnetic fields responsible for major
magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93,
8518–8531, 1988.
Tsurutani, B. T., Gould, T., Goldstein, B. E., and Gonzalez, W. D.:
Interplanetary Alfvén waves and auroral (substorm) activity: IMP 8, J.
Geophys. Res., 95, 2241–2252, 1990.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., and Lee, Y. T.: Great magnetic
storms, Geophys. Res. Lett., 19, 73–76, 1992a.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Lee, Y. T., Okada, M., and Park,
D.: Reply to L. J. Lanzerotti: Solar wind ram pressure corrections and an
estimation of the efficiency of viscous interaction, Geophys. Res. Lett.,
19, 1993–1994, 1992b.
Tsurutani, B. T., Gonzalez, W. D., Zhou, X.-Y., Lepping, R. P., and Bothmer,
V.: Properties of slow magnetic clouds, J. Atmos. Sol.-Terr. Phys., 66,
147–151, 1994.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K.,
and Okada, M.: Interplanetary origin of geomagnetic activity in the
declining phase of the solar cycle, J. Geophys. Res., 100, 21717–21733, 1995.
Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K. (Eds.):
Magnetic Storms, Amer. Geophys. Un. Press, Wash. DC, 98, 1997a.
Tsurutani, B. T. and Gonzalez, W. D.: The interplanetary causes of magnetic
storms: A review, in: Magnetic Storms, edited by: Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K., AGU Press, Wash. DC, 98, 77–89, 1997b.
Tsurutani, B. T., Arballo, J. K., Lakhina, G. S., Ho, C. M., Ajello, J.,
Pickett, J. S., Gurnett, D. A., Lepping, R. P., Peterson, W. K., Rostoker, G.,
Kamide, Y., and Kokubun, S.: The January 10, 1997 auroral hot spot,
horseshoe aurora and first substorm: A CME loop?, Geophys. Res. Lett., 25,
3047–3050, 1998.
Tsurutani, B. T., Arballo, J. K., Lakhina, G. S., Ho, C. M., Ajello, J.,
Pickett, J. S., Gurnett, D. A., Lepping, R. P., Peterson, W. K., Rostoker,
G., Kamide, Y., and Kokubun, S.: The January 10, 1997 auroral hot spot,
horseshoe aurora and first substorm: A CME loop?, J. Geophys. Res., 25,
3047–3050, 1998.
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., and Alex, S.: The extreme
magnetic storm of 1–2 September 1859, J. Geophys. Res. 108, 1268,
https://doi.org/10.1029/2002JA009504, 2003.
Tsurutani, B. T., Gonzalez, W. D., Zhou, X.-Y., Lepping, R. P., and Bothmer,
V.: Properties of slow magnetic clouds, J. Atmos. Sol.-Terr. Phys., 66,
147–151, 2004a.
Tsurutani, B. T., Gonzalez, W. D., Guarnieri, F., Kamide, Y., Zhao, X., and
Arballo, J. K.: Are high-intensity long-duration continuous AE activity
(HILDCAA) events substorm expansion events?, J. Atmos. Sol.-Terr. Phys., 66,
167–176, 2004b.
Tsurutani, B. T., Mannucci, A., Iijima, B., Abdu, M. A., Sobral, J. H. A.,
Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., Fejer, B.,
Fuller-Rowell, T. J., Kozyra, J., Foster, J. C., Coster, A., and Vasyliunas,
V. M.: Global dayside ionospheric uplift and enhancement associated with
interplanetary electric fields, J. Geophys. Res., 109, A08302, https://doi.org/10.1029/2003JA010342, 2004c.
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., and Alex, S.: Reply to
comment by S.-I. Akasofu and Y. Kamide on “The extreme magnetic storm of
1–2 September 1859”, J. Geophys. Res., 110, A09227, https://doi.org/10.1029/2005JA011121, 2005a.
Tsurutani, B. T., Judge, D. L., Guarnieri, F. L., Gangopadhyay, P., Jones,
A. R., Nuttall, J., Zambon, G. A., Didkovsky, L., Mannucci, A. J., Iijima, B.,
Meier, R. R., Immel, T. J., Woods, T. N., Prasad, S., Floyd, L., Huba, J.,
Solomon, S. C., Straus, P., and Viereck, R.: The October 38, 2003 extreme EUV
solar flare and resultant extreme ionospheric effects: Comparison to other
Halloween events and the Bastille day event, Geophys. Res. Lett., 32,
L03S09, https://doi.org/10.1029/2004GL021475, 2005b.
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Sobral, J. H. A.,
and Gopalswamy, N. (Eds.): Recurrent Magnetic Storms: Corotating Solar
Wind Streams, Amer. Geophys. Un. Press, Wash. DC, 167, 2006a.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L.,
Golpalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I.,
McPherron, R., Soraas, F., and Vasyliunas, V.: Corotating solar wind streams
and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01,
https://doi.org/10.1029/2005JA011273, 2006b.
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Gopalswamy, N.,
and Guarnieri, F. L.: Magnetic storms caused by corotating solar wind
streams, in: Recurrent Magnetic Storms Corotating Solar Wind Streams, edited
by: Tsurutani, B. T., McPherron, R., Lu, G., Sobral, J. H. A., and Gopalswamy, N., AGU Press, Wash. DC, 167, 1–17, 2006c.
Tsurutani, B. T., Echer, E., Guarnieri, F. L., and Kozyra, J. U.: CAWSES
November 7–8, 2004 superstorm: Complex solar and interplanetary features in
the post-solar maximum phase, Geophys. Res. Lett., 35, L06S05, https://doi.org/10.1029/2007GL031473, 2008a.
Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Saito, A., Araki, T.,
Yumoto, K., Tsuda, T., Abdu, M. A., Sobral, J. H. A., Gonzalez, W. D.,
McCreadie, H., Lakhina, G. S., and Vasyliunas, V. M.: Prompt penetration electric fields (PPEFs) and their ionosphericeffects during the great magnetic storm of 30–31 October 2003, J. Geophys. Res., 113,
A05311, https://doi.org/10.1029/2007JA012879, 2008b.
Tsurutani, B. T., Horne, R. B., Pickett, J. S., Santolik, O., Schriver, D., and
Verhoglyadova, O. P.: Introduction to the special section on Chorus: Chorus and its role in space weather, J. Geophys. Res., 115, AF0010, https://doi.org/10.1029/2010JA015870, 2010.
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Gonzalez, W. D., Echer,
E., and Guarnieri, F. L.: A review of interplanetary discontinuities and
their geomagnetic effects, J. Atmos. Sol.-Terr. Phys., 73, 5–19, 2011.
Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., and Lakhina, G. S.:
Extreme changes in the dayside ionosphere during a Carrington-type magnetic
storm, J. Spa. Weath. Spa. Clim., 2, A05, https://doi.org/10.1051/swsc/2012004, 2012.
Tsurutani, B. T., Echer, E., Shibata. K., Verkhoglyadova, O. P., Mannucci,
A. J., Gonzalez, W. D., Kozyra, J. U., and Paetzold, M.: The interplanetary
causes og geomagnetic activity during the 7–17 March 2012 interval: a CAWSES
II overview, J. Spa. Weath. Spa. Clim., 4, A02, https://doi.org/10.1051/swsc/2013056, 2014.
Tsurutani, B. T., Hajra, R., Echer, E., and Gjerloev, J. W.: Extremely intense (SML nT) substorms: isolated events that are externally triggered?, Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, 2015.
Tsurutani, B. T., Hajra, R., Echer, E., Gonzalez, W. D., and Santolik, O.:
Predicting magnetospheric relativistic >1 MeV electrons, NASA
Tech Briefs, 40, p. 20, 2016a.
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Bhanu, R., Mannucci,
A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E.,
Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS) impingement
onto the magnetosphere as a cause of relativistic electron dropouts (REDs)
via a coherent EMIC wave scattering with possible consequences for climate
change mechanisms, J. Geophys. Res.-Spa. Phys., 121, 10130–10156, https://doi.org/10.1002/2016JA022499, 2016b.
Tsurutani, B. T., Lakhina, G. S., Echer, E., Hajra, R., Nayak, C., Mannucci,
A. J., and Meng, X.: Comment on “Modeling extreme “Carrington-type” space
weather events using three-dimensional global MHD simulations” by C. M.
Ngwira, A. Pulkkinen, M. M Kuznetsova and A. Glocer”, J. Geophys. Res.-Spa.
Phys., 123, 1388–1392, https://doi.org/10.1002/2017JA024779,
2018a.
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H.,
and Mannucci, A. J.: A review of Alfvénic turbulence in high-speed solar
wind streams: Hints from cometary plasma turbulence, J. Geophys. Res.-Spa.
Phys., 123, 2458–2492, https://doi.org/10.1002/2017JA024203, 2018b.
Turner, D. L. and Li, X.: Quantitative forecast of relativistic electron
flux at geosynchronous orbit based on low energy electron flux, Space
Weather, 6, S05005, https://doi.org/10.1029/2007SW000354, 2008.
Turner, N. E., Mitchell, E. J., Knipp, D. J., and Emery, B. A.: Energetics
of magnetic storms driven by corotating interaction regions: a study of
geoeffectiveness, in: Recurrent Magnetic Storms: Corotating Solar Wind
Streams, Geophys. Monogr. Ser., vol. 167, edited by: Tsurutani, B. T., McPherron, R., Lu, G., Sobral, J. H. A., and Gopalswamy, N.,
pp. 113, AGU, Washington, DC, https://doi.org/10.1029/167GM11, 2006.
Usanova, M. E., Mann, I. R., Bortnik, J., Shao, L., and Angelopoulos, V.:
THEMIS observations of electromagnetic ion cyclotron wave occurrence:
Dependence on AE, SYMH and solar wind dynamic pressure, J. Geophys. Res.,
117, A10218, https://doi.org/10.1029/2012JA018049, 2012.
Usoskin, I. G. and Kovaltsov, G. A.: Occurrence of extreme solar particle
events: Assessment from historical proxy data, Astrophys. J., 757, 92,
https://doi.org/10.1088/0004-637X/757/1/92, 2012.
Usoskin, I. G., Kromer, B., Ludlow, F., Beer, J., Friedrich, M., Kovaltsov,
G. A., Solanki, S. K., and Wacker, L.: The AD775 cosmic event revisited: the
Sun is to blame, Astron. Astrophys., L3, https://doi.org/10.1051/0004-6361/201321080, 2013.
Vaisberg, O. L. and Zastenker, G. N.: Solar wind and magnetosheath
observations at Earth during August 1972, Spa. Sci. Rev., 19, 687–702, 1976.
Volland, H.: A semi-empirical model of large-scale magnetospheric electric
fields, J. Geophys. Res., 78, 171–180, 1973.
Wang, C. B., Chao, J. K., and Lin, C.-H.: Influence of the solar wind
dynamic pressure on the decay and injection of the ring current, J. Geophys.
Res., 108, 1341, https://doi.org/10.1029/2003JA009851, 2003.
Wang, J., Zhao, M., and Zhou, G.: Magnetic changes in the course of the X7.1
solar flare on 2005 January 20, Astrophys. J., 690, 862–874, 2009.
Wanliss, J. A. and Showalter, K. M.: High-resolution global storm index:
Dst versus SYM-H, J. Geophys. Res., 111, A02202, https://doi.org/10.1029/2005JA011034, 2006.
West Jr., H. I., Buck, R. M, and Walton, J. R.: Shadowing of electron
azimuthal-drift motions near the noon magnetopause, Nature Phys. Sci., 240,
6–7, https://doi.org/10.1038/physci240006a0, 1972.
Weygand, J. M. and McPherron, R. L.: Dependence of ring current asymmetry
on storm phase, J. Geophys. Res., 111, A11221, https://doi.org/10.1029/2006JA011808, 2006.
Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O., and Olson, R. H.:
Solar magnetic sector structure: Relation to circulation of the Earth's
atmosphere, Science, 180, 185–186, https://doi.org/10.1126/science.180.4082.185, 1973.
Williams, D. J., Mitchell, D. G., Huang, C. Y., Frank, L. A., and Russell,
C. T.: Particle acceleration during substorm growth and onset, Geophys. Res.
Lett., 17, 587–590, https://doi.org/10.1029/GL017i005p00587,
1990.
Wing, S., Johnson, J. R., Jen, J., Meng, C. I., Sibeck, D. G., Bechtold, K.,
Freeman, J., Costello, K., Balikhin, M., and Takahashi, K.: Kp forecast
models, J. Geophys. Res., 110, A04203, https://doi.org/10.1029/2004JA010500, 2005.
Wing, S., Johnson, J. R., Camporeale, E., and Reeves, G. D.: Information
theoretical approach to discovering solar wind drivers of the outer
radiation belt, J. Geophys. Res.-Spa. Phys., 121, 9378–9399, 2016.
Winterhalter, D. E., Smith, E. J., Burton, M. E., Murphy, N., and McComas,
D. J.: The heliospheric plasma sheet, J. Geophys. Res., 99, 6667, https://doi.org/10.1029/93JA03481, 1994.
Wolff, E. W., Bigler, M., Curran, M. A. J., Dibb, J. E., Frey, M. M., Legrand,
M., and McConnell, J. R.: The Carrington event not observed in most ice core
nitrate records, Geophys. Res. Lett., 39, L08503, https://doi.org/10.1029/2012GL051603, 2012.
Wygant, J., Mozer, F., Temerin, M., Blake, J., Maynard, N., Singer, H., and
Smiddy, M.: Large amplitude electric and magnetic field signatures in the
inner magnetosphere during injection of 15 MeV electron drift echos,
Geophys. Res. Lett., 21, 1739–1742, 1994.
Wygant, J., Rowland, D., Singer, H. J., Temerin, M., Mozer, F., and Hudson,
M. K.: Experimental evidence on the role of the large spatial scale electric
field in creating the ring current, J. Geophys. Res., 103, 29527–29544,
1998.
Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P.,
Rich, N. B., and Howard, R. A.: A catalog of white light coronal mass
ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105,
https://doi.org/10.1029/2003JA010282, 2004.
Yun, W. T., Stefanova, L., Mitra, A. K., Kumar, T. S. V. V., Dewar, W., and
Krishnamurti, T. N.: A multi-model superensemble algorithm for seasonal
climate prediction using DEMETER forecasts, Tellus, 57, 280–289,
https://doi.org/10.1111/j.1600-0870.2005.00131.x, 2005.
Yurchyshyn, V., Hu, Q., Lepping, R. P., Lynch, B. J., and Krall, J.: Orientations
of LASCO halo CMEs and their connection to the flux rope structure of
interplanetary CMEs, Adv. Space Res., 40, 1821–1826, 2007.
Zhang, J., Woch, J., and Solanki, S.: Polar coronal holes during solar
cycles 22 and 23, Chin, J. Astron. Astrophys., 5, 531–538, 2005.
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.‐C., Yashiro, S., and Zhukov, A. N.: Solar and interplanetary sources of major geomagnetic
storms (Dst nT) during 1996–2005, J. Geophys. Res., 112, A10102,
https://doi.org/10.1029/2007JA012321, 2007.
Zhao, X. and Dryer, M.: Current status of CME/shock arrival time
prediction, Space Weather, 12, 448–469, https://doi.org/10.1002/2014SW001060, 2014.
Zastenker, G. N., Temny, V. V., d'Uston, C., and Bosqued, J. M.: The form and
energy of the shock waves from the solar flares of August 2, 4 and 7, 1972,
J. Geophys. Res., 83, 1035–1041, 1978.
Zhou, X. and Tsurutani, B. T.: Rapid intensification and propagation of the
dayside aurora: Large scale interplanetary pressure pulses (fast shocks),
Geophys. Res. Lett., 26, 1097–1100, 1999.
Zhou, X. and Tsurutani, B. T.: Interplanetary shock triggering of nightside
geomagnetic activity: Substorms, pseudobreakups, and quiescent events, J.
Geophys. Res., 106, 18957–18967, 2001.
Zhou, X.-Y., Strangeway, R. J., Anderson, P. C., Sibeck, D. G., Tsurutani,
B. T., Haerendel, G., Frey, H. U., and Arballo, J. K.: Shock aurora: FAST and
DMSP observations, J. Geophys. Res., 108, https://doi.org/10.1029/2002JA009701, 2003.
Short summary
Current space weather problems are discussed for young researchers. We have discussed some of the major problems that need to be solved for space weather forecasting to become a reality.
Current space weather problems are discussed for young researchers. We have discussed some of...