Articles | Volume 27, issue 3
https://doi.org/10.5194/npg-27-373-2020
https://doi.org/10.5194/npg-27-373-2020
Research article
 | 
02 Jul 2020
Research article |  | 02 Jul 2020

Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network

Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian

Related authors

Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022,https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
A quest for precipitation attractors in weather radar archives
Loris Foresti, Bernat Puigdomènech Treserras, Daniele Nerini, Aitor Atencia, Marco Gabella, Ioannis V. Sideris, Urs Germann, and Isztar Zawadzki
Nonlin. Processes Geophys., 31, 259–286, https://doi.org/10.5194/npg-31-259-2024,https://doi.org/10.5194/npg-31-259-2024, 2024
Short summary
Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023,https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023,https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary

Cited articles

Andersen, J. and Kuang, Z.: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet, J. Climate, 25, 2782–2804, 2012. a
Arbabi, H. and Mezic, I.: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dynam. Syst., 16, 2096–2126, 2017. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Benedict, J. and Randall, D.: Structure of the Madden–Julian oscillation in the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296, 2009. a
Bishop, C.: Pattern Recognition and Machine Learning, Springer, 2006. a
Download
Short summary
The performance of three machine-learning methods for data-driven modeling of a multiscale chaotic Lorenz 96 system is examined. One of the methods is found to be able to predict the future evolution of the chaotic system well from just knowing the past observations of the large-scale component of the multiscale state vector. Potential applications to data-driven and data-assisted surrogate modeling of complex dynamical systems such as weather and climate are discussed.