Articles | Volume 27, issue 3
Nonlin. Processes Geophys., 27, 373–389, 2020
Nonlin. Processes Geophys., 27, 373–389, 2020
Research article
02 Jul 2020
Research article | 02 Jul 2020

Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network

Ashesh Chattopadhyay et al.

Related authors

Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237,,, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480,,, 2021
Short summary
Enhancing geophysical flow machine learning performance via scale separation
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443,,, 2021
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119,,, 2021
Short summary
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347,,, 2020
Short summary

Cited articles

Andersen, J. and Kuang, Z.: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet, J. Climate, 25, 2782–2804, 2012. a
Arbabi, H. and Mezic, I.: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dynam. Syst., 16, 2096–2126, 2017. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55,, 2015. a
Benedict, J. and Randall, D.: Structure of the Madden–Julian oscillation in the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296, 2009. a
Bishop, C.: Pattern Recognition and Machine Learning, Springer, 2006. a
Short summary
The performance of three machine-learning methods for data-driven modeling of a multiscale chaotic Lorenz 96 system is examined. One of the methods is found to be able to predict the future evolution of the chaotic system well from just knowing the past observations of the large-scale component of the multiscale state vector. Potential applications to data-driven and data-assisted surrogate modeling of complex dynamical systems such as weather and climate are discussed.