Articles | Volume 27, issue 2
https://doi.org/10.5194/npg-27-175-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-27-175-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Study of the fractality in a magnetohydrodynamic shell model forced by solar wind fluctuations
Macarena Domínguez
CORRESPONDING AUTHOR
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
Giuseppina Nigro
Dipartimento di Fisica, Universita della Calabria, 87036 Rende CS, Italy
Víctor Muñoz
Departamento de Física, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
Vincenzo Carbone
Dipartimento di Fisica, Universita della Calabria, 87036 Rende CS, Italy
Mario Riquelme
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
Related authors
No articles found.
Eugenio E. Vogel, Felipe G. Brevis, Denisse Pastén, Víctor Muñoz, Rodrigo A. Miranda, and Abraham C.-L. Chian
Nat. Hazards Earth Syst. Sci., 20, 2943–2960, https://doi.org/10.5194/nhess-20-2943-2020, https://doi.org/10.5194/nhess-20-2943-2020, 2020
Short summary
Short summary
The Nazca–South American subduction front is one of the most active in the world. We have chosen four zones along this front to do a comparative study on possible different dynamics. Data are public and well tested in the last decades. The methods are original since mutability and Shannon entropy are not always used in this kind of problem, and, to our knowledge, this is the first time they are combined. The north of Chile could be a zone with greater chances of a large earthquake.
Eugenio E. Vogel, Felipe G. Brevis, Denisse Pastén, Víctor Muñoz, Rodrigo A. Miranda, and Abraham C.-L. Chian
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-309, https://doi.org/10.5194/nhess-2019-309, 2019
Manuscript not accepted for further review
Short summary
Short summary
Earthquakes are natural hazardous phenomena that can bring death, destruction,
economical crisis, migrations and other social implications. This paper aims to understand one of the main causes for seismic activity: subduction of one Earth plate underneath another one in a stochastic way. The time series associated to this activity provides information which we have analyzed it by new techniques. This allows us to estimate where important earthquakes can occur although we cannot yet say when.
Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone
Nonlin. Processes Geophys., 25, 207–216, https://doi.org/10.5194/npg-25-207-2018, https://doi.org/10.5194/npg-25-207-2018, 2018
Short summary
Short summary
Fractals are self-similar objects (which look the same at all scales), whose dimensions can be noninteger. They are mathematical concepts, useful to describe various physical systems, as the fractal dimension is a measure of their complexity. In this paper we study how these concepts can be applied to some problems in space plasmas, such as the activity of the Earth's magnetosphere, simulations of plasma turbulence, or identification of magnetic structures ejected from the Sun.
Bennett A. Maruca, Raffaele Marino, David Sundkvist, Niharika H. Godbole, Stephane Constantin, Vincenzo Carbone, and Herb Zimmerman
Atmos. Meas. Tech., 10, 1595–1607, https://doi.org/10.5194/amt-10-1595-2017, https://doi.org/10.5194/amt-10-1595-2017, 2017
Short summary
Short summary
The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to characterize small-scale fluctuations in the troposphere and stratosphere. The mission's key instrument, a customized sonic anemometer, made high-speed calibrated measurements of the 3-D wind velocity and air temperature. TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January 2016 from McMurdo Station, Antarctica.
Tommaso Alberti, Mirko Piersanti, Antonio Vecchio, Paola De Michelis, Fabio Lepreti, Vincenzo Carbone, and Leonardo Primavera
Ann. Geophys., 34, 1069–1084, https://doi.org/10.5194/angeo-34-1069-2016, https://doi.org/10.5194/angeo-34-1069-2016, 2016
Short summary
Short summary
We investigate the time variation of the magnetospheric and Earth's magnetic field during both quiet and disturbed periods. We identify the timescale variations associated with different magnetospheric current systems, solar-wind–magnetosphere high-frequency interactions, ionospheric processes, and internal dynamics of the magnetosphere. In addition, we propose a new local index for the identification of the intensity of a geomagnetic storm on the ground.
J. Wanliss, V. Muñoz, D. Pastén, B. Toledo, and J. A. Valdivia
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-2-619-2015, https://doi.org/10.5194/npgd-2-619-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We explore bursty multiscale energy dissipation from earthquakes by comparing predictions of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake scaling. Do earthquakes fit the hypothesis of an avalanching critical system? We study a set of new power law exponents, and compare these explicitly to predictions for critical avalanching systems. At below 84 hours radiated energy follows patterns fitting the theory of nonequilibrium phase transitions.
T. Alberti, F. Lepreti, A. Vecchio, E. Bevacqua, V. Capparelli, and V. Carbone
Clim. Past, 10, 1751–1762, https://doi.org/10.5194/cp-10-1751-2014, https://doi.org/10.5194/cp-10-1751-2014, 2014
Cited articles
Aschwanden, M. J. and Aschwanden, P. D.: Solar Flare Geometries. I. The Area Fractal Dimension, Astrophys. J., 674, 530–543, https://doi.org/10.1086/524371, 2008a. a, b
Aschwanden, M. J. and Aschwanden, P. D.: Solar Flare Geometries. II. The Volume Fractal Dimension, Astrophys. J., 674, 544–553, https://doi.org/10.1086/524370, 2008b. a
Balasis, G., Daglis, I. A., Kapiris, P., Mandea, M., Vassiliadis, D., and Eftaxias, K.: From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys., 24, 3557–3567, https://doi.org/10.5194/angeo-24-3557-2006, 2006. a, b, c, d
Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., and Vulpiani, A.: Power Laws in Solar Flares: Self-Organized Criticality or Turbulence?, Phys. Rev. Lett., 83, 4662–4665, https://doi.org/10.1103/PhysRevLett.83.4662, 1999. a, b
Burton, R. K., McPherron, R. L., and Russel, C. T.: An Empirical Relationship between Interplanetary Conditions and Dst, J. Geophys. Res., 80, 4204–4217, https://doi.org/10.1029/JA080i031p04204, 1975. a, b
Carreras, B. A., Lynch, V. E., Newman, D. E., Balbín, R., Bleuel, J., Pedrosa, M. A., Endler, M., van Milligen, B., Sánchez, E., and Hidalgo, C.: Intermittency of Plasma Edge Fluctuation data: Multifractal Analysis, Phys. Plasmas, 7, 3278–3287, https://doi.org/10.1063/1.874193, 2000. a
Chang, T.: Self-Organized Criticality, Multi-Fractal Spectra, Sporadic Localized Reconnection and Intermittent Turbulence in the Magnetotail, Phys. Plasmas, 6, 4137, https://doi.org/10.1023/A:1002486121567, 1999. a
Chang, T. and Wu, C. C.: Rank-Ordered Multifractal Spectrum for Intermittent Fluctuations, Phys. Rev. E, 77, 045401, https://doi.org/10.1103/PhysRevE.77.045401, 2008. a
Chapman, S. C., Hnat, B., and Kiyani, K.: Solar cycle dependence of scaling in solar wind fluctuations, Nonlin. Processes Geophys., 15, 445–455, https://doi.org/10.5194/npg-15-445-2008, 2008. a
Conlon, P. A., Gallagher, P. T., McAteer, R. T. J., Ireland, J., Young, C. A., Kestener, P., Hewett, R. J., and Maguire, K.: Multifractal Properties of Evolving Active Regions, Sol. Phys., 248, 297–309, https://doi.org/10.1007/s11207-007-9074-7, 2008. a
Dimitropoulou, M., Georgoulis, M., Isliker, H., Vlahos, L., Anastasiadis, A., Strintzi, D., and Moussas, X.: The correlation of fractal structures in the photospheric and the coronal magnetic field, Astron. Astrophys., 505, 1245–1253, https://doi.org/10.1051/0004-6361/200911852, 2009. a, b
Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., and Kurths, J.: Recurrence-Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales, J. Geophys. Res., 124, 90–108, https://doi.org/10.1029/2018JA025318, 2018. a
Echer, E., Alves, M. V., and Gonzalez, W. D.: Geoeffectiveness of Interplanetary Shocks during Solar Minimum (1995–1996) and Solar Maximum (2000), Sol. Phys., 221, 361–380, https://doi.org/10.1023/B:SOLA.0000035045.65224.f3, 2004. a
Eftaxias, K., Contoyiannis, Y., Balasis, G., Karamanos, K., Kopanas, J., Antonopoulos, G., Koulouras, G., and Nomicos, C.: Evidence of fractional-Brownian-motion-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions, Nat. Hazards Earth Syst. Sci., 8, 657–669, https://doi.org/10.5194/nhess-8-657-2008, 2008. a
Eftaxias, K. A., Kapiris, P. G., Balasis, G. T., Peratzakis, A., Karamanos, K., Kopanas, J., Antonopoulos, G., and Nomicos, K. D.: Unified approach to catastrophic events: from the normal state to geological or biological shock in terms of spectral fractal and nonlinear analysis, Nat. Hazards Earth Syst. Sci., 6, 205–228, https://doi.org/10.5194/nhess-6-205-2006, 2006. a
Georgoulis, M. K.: Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent Than Others?, Sol. Phys., 276, 161–181, https://doi.org/10.1007/s11207-010-9705-2, 2012. a
Gledzer, E. B.: System of Hydrodynamic Type Allowing 2 Quadratic Integrals of Motion, Sov. Phys. Dokl. SSSR, 18, 216–217, 1973. a
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What Is A Geomagnetic Storm?, J. Geophys. Res., 93, 5771–5792, https://doi.org/10.1029/93JA02867, 1994. a, b
Gonzalez, W. D., Dal Lago, A., Clúa de Gonzalez, A. L., Vieira, L. E. A., and Tsurutani, B. T.: Prediction of Peak-Dst from Halo CME/Magnetic Cloud-Speed Observations, J. Atmos. Sol.-Terr. Phy., 66, 161–165, https://doi.org/10.1016/j.jastp.2003.09.006, 2004. a, b, c
Gündüz, G. and Gündüz, U.: The Mathematical Analysis of the Structure of Some Songs, Physica A, 357, 565–592, https://doi.org/10.1016/j.physa.2005.03.042, 2005. a
Hsü, K. J. and Hsü, A. J.: Fractal Geometry of Music, P. Natl. Acad. Sci. USA, 87, 938–941, https://doi.org/10.1073/pnas.87.3.938, 1990. a
Huttunen, K. E. J., Koskinen, H. E. J., and Schwenn, R.: Variability of Magnetospheric Storms Driven by Different Solar Wind Perturbations, J. Geophys. Res., 107, 1121, https://doi.org/10.1029/2001JA900171, 2002. a
Kane, R. P.: How Good is the Relationship of Solar and Interplanetary Plasma Parameters with Geomagnetic Storms?, J. Geophys. Res., 110, 02213, https://doi.org/10.1029/2004JA010799, 2005. a, b, c
Kiyani, K., Chapman, S. C., Hnat, B., and Nicol, R. M.: Self-Similar Signature of the Active Solar Corona within the Inertial Range of Solar-Wind Turbulence, Phys. Rev. Lett., 98, 211101, https://doi.org/10.1103/PhysRevLett.98.211101, 2007. a
Kozelov, B. V.: Fractal approach to description of the auroral structure, Ann. Geophys., 21, 201–2023, https://doi.org/10.5194/angeo-21-2011-2003, 2003. a
Macek, W. M.: Modeling Multifractality of the Solar Wind, Space Sci. Rev., 122, 329–337, https://doi.org/10.1007/s11214-006-8185-z, 2006. a
Macek, W. M.: Multifractality and intermittency in the solar wind, Nonlin. Processes Geophys., 14, 695–700, https://doi.org/10.5194/npg-14-695-2007, 2007. a
Macek, W. M. and Wawrzaszek, A.: Evolution of Asymmetric Multifractal Scaling of Solar Wind Turbulence in the Outer Heliosphere, J. Geophys. Res., 114, 03108, https://doi.org/10.1029/2008JA013795, 2009. a
Macek, W. M., Bruno, R., and Consolini, G.: Generalized Dimensions for Fluctuations in the Solar Wind, Phys. Rev. E, 72, 017202, https://doi.org/10.1103/PhysRevE.72.017202, 2005. a
Materassi, M. and Consolini, G.: Magnetic Reconnection Rate in Space Plasmas: A Fractal Approach, Phys. Rev. Lett., 99, 175002, https://doi.org/10.1103/PhysRevLett.99.175002, 2007. a
McAteer, R. T. J., Gallagher, P. T., and Ireland, J.: Statistics of Active Region Complexity: A Large-Scale Fractal Dimension Survey, Astrophys. J., 631, 628–635, https://doi.org/10.1086/432412, 2005. a, b
McAteer, R. T. J., Gallagher, P. T., and Conlon, P. A.: Turbulence, Complexity, and Solar Flares, Adv. Space Res., 45, 1067–1074, https://doi.org/10.1016/j.asr.2009.08.026, 2010. a, b
Nanjo, K. and Nagahama, H.: Fractal Properties of Spatial Distributions of Aftershocks and Active Faults, Chaos Soliton. Fract., 19, 387, https://doi.org/10.1016/S0960-0779(03)00051-1, 2004. a
Neto, C. R., Guimarães-Filho, Z. O., Caldas, I. L., Nascimento, I. C., and Kuznetsov, Y. K.: Multifractality in Plasma Edge Electrostatic Turbulence, Phys. Plasmas, 15, 082311, https://doi.org/10.1063/1.2973175, 2008. a
Nigro, G.: A Shell Model for a Large-Scale Turbulent Dynamo, Geophys. Astro. Fluid, 107, 101–113, https://doi.org/10.1080/03091929.2012.664141, 2013. a
Nigro, G. and Carbone, V.: Magnetic Reversals in a Modified Shell Model for Magnetohydrodynamics Turbulence, Phys. Rev. E, 82, 016313, https://doi.org/10.1103/PhysRevE.82.016313, 2010. a, b
Nigro, G. and Carbone, V.: Finite-Time Singularities and Flow Regularization in a Hydromagnetic Shell Model at Extreme Magnetic Prandtl Numbers, New J. Phys., 17, 073038, https://doi.org/10.1088/1367-2630/17/7/073038, 2015. a, b
Nigro, G. and Veltri, P.: A Study of the Dynamo Transition in a Self-Consistent Nonlinear Dynamo Model, Astrophys. J. Lett., 740, L37, https://doi.org/10.1088/2041-8205/740/2/L37, 2011. a, b
Nigro, G., Malara, F., Carbone, V., and Veltri, P.: Nanoflares and MHD Turbulence in Coronal Loops: A Hybrid Shell Model, Phys. Rev. Lett., 92, 194501, https://doi.org/10.1103/PhysRevLett.92.194501, 2004. a, b, c
Obukhov, A. M.: Some General Properties of Equations Describing The Dynamics of the Atmosphere, Akad. Nauk. SSSR, Izv. Serria Fiz. Atmos. Okeana, 7, 695–704, 1971. a
OMNIWeb Plus Data Service: OMNI Data, Goddard Space Flight Center, available at: https://cdaweb.gsfc.nasa.gov/istp_public/, last access: 4 March 2020. a
Pastén, D., Muñoz, V., Cisternas, A., Rogan, J., and Valdivia, J. A.: Monofractal and Multifractal Analysis of the Spatial Distribution of Earthquakes in the Central Zone of Chile, Phys. Rev. E, 84, 066123, https://doi.org/10.1103/PhysRevE.84.066123, 2011. a
Rangarajan, G. K. and Barreto, L. M.: Long Term Variability in Solar Wind Velocity and IMF Intensity and the Relationship between Solar Wind Parameters & Geomagnetic Activity, Earth Planets Space, 52, 121, https://doi.org/10.1186/BF03351620, 2000.
a
Rathore, B. S., Gupta, D. C., and Parashar, K. K.: Relation Between Solar Wind Parameter and Geomagnetic Storm Condition during Cycle-23, International Journal of Geosciences, 5, 1602–1608, https://doi.org/10.4236/ijg.2014.513131, 2014. a
Rathore, B. S., Gupta, D. C., and Kaushik, S. C.: Effect of Solar Wind Plasma Parameters on Space Weather, Res. Astron. Astrophys., 15, 85, https://doi.org/10.1088/1674-4527/15/1/009, 2015. a, b
Sahimi, M., Robertson, M. C., and Sammis, C. G.: Fractal Distribution of Earthquake Hypocenters and its Relation to Fault Patterns and Percolation, Phys. Rev. Lett., 70, 2186–2189, https://doi.org/10.1103/PhysRevLett.70.2186, 1993. a
Snyder, C. W., Neugebauer, M., and Rao, U. R.: The Solar Wind Velocity and Its Correlation with Cosmic-Ray Variations and with Solar and Geomagnetic Activity, J. Geophys. Res., 68, 6361–6370, 1963. a
Su, Z.-Y. and Wu, T.: Music Walk, Fractal Geometry in Music, Physica A, 380, 418–428, https://doi.org/10.1016/j.physa.2007.02.079, 2007. a
Space Weather Prediction Center (SWPC): Sunspot number data, U.S. Dept. of Commerce, NOAA, available at: ftp://ftp.swpc.noaa.gov/pub/weekly/RecentIndices.txt, last
access: 4 March 2020. a
Szczepaniak, A. and Macek, W. M.: Asymmetric multifractal model for solar wind intermittent turbulence, Nonlin. Processes Geophys., 15, 615–620, https://doi.org/10.5194/npg-15-615-2008, 2008. a, b
Tsurutani, B. T., Gonzalez, W., Tang, F., Akasofu, S., and Smith, E. J.: Origin of Interplanetary Southward Magnetic Fields Responsible for Major Magnetic Storms near Solar Maximum (1978–1979), J. Geophys. Res., 93, 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988. a
Uritsky, V. M., Klimas, A. J., and Vassiliadis, D.: Analysis and Prediction of High-Latitude Geomagnetic Disturbances based on a Self-Organized Criticality Framework, Adv. Space Res., 37, 539–546, https://doi.org/10.1016/j.asr.2004.12.059, 2006. a
Yamada, M. and Ohkitani, K.: Lyapunov Spectrum of a Model of Two-Dimensional Turbulence, Phys. Rev. Lett., 60, 983–986, https://doi.org/10.1103/PhysRevLett.60.983, 1988. a
Yankov, V. V.: Magnetic Field Dissipation and Fractal Model of Current Sheets, Phys. Plasmas, 4, 571, https://doi.org/10.1063/1.872155, 1997. a
Zaginaylov, G., Grudiev, A., Shünemann, K., and Turbin, P.: Fractal Properties of Trivelpiece-Gould Waves in Periodic Plasma-Filled Waveguides, Phys. Rev. Lett., 88, 195005, https://doi.org/10.1103/PhysRevLett.88.195005, 2002. a
Short summary
We study a model for the relationship between space plasma and geomagnetic activity, by using an MHD shell model, where its forcing has been replaced by solar wind fluctuation data.
We study the fractality of the forcing, its output, and the activity of the model, which may represent the existence of geomagnetic storms. We find correlations between some of these metrics and the solar cycle, suggesting that the complexity of the solar wind may have influence on the level of geomagnetic activity.
We study a model for the relationship between space plasma and geomagnetic activity, by using an...