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Abstract. The description of the relationship between inter-
planetary plasma and geomagnetic activity requires complex
models. Drastically reducing the ambition of describing this
detailed complex interaction and, if we are interested only in
the fractality properties of the time series of its characteris-
tic parameters, a magnetohydrodynamic (MHD) shell model
forced using solar wind data might provide a possible novel
approach. In this paper we study the relation between the ac-
tivity of the magnetic energy dissipation rate obtained in one
such model, which may describe geomagnetic activity, and
the fractal dimension of the forcing.

In different shell model simulations, the forcing is pro-
vided by the solution of a Langevin equation where a white
noise is implemented. This forcing, however, has been shown
to be unsuitable for describing the solar wind action on the
model. Thus, we propose to consider the fluctuations of the
product between the velocity and the magnetic field solar
wind data as the noise in the Langevin equation, the solution
of which provides the forcing in the magnetic field equation.

We compare the fractal dimension of the magnetic energy
dissipation rate obtained, of the magnetic forcing term, and
of the fluctuations of v · bz, with the activity of the magnetic
energy dissipation rate. We examine the dependence of these
fractal dimensions on the solar cycle. We show that all mea-
sures of activity have a peak near solar maximum. Moreover,
both the fractal dimension computed for the fluctuations of
v · bz time series and the fractal dimension of the magnetic
forcing have a minimum near solar maximum. This suggests
that the complexity of the noise term in the Langevin equa-
tion may have a strong effect on the activity of the magnetic
energy dissipation rate.

1 Introduction

There are many investigations regarding the relation between
interplanetary plasma parameters and the occurrence of geo-
magnetic events in the Earth’s magnetosphere (Kane, 2005;
Gonzalez et al., 1994, 2004; Tsurutani et al., 1988; Burton
et al., 1975; Rathore et al., 2015; Snyder et al., 1963). Among
these, Rathore et al. (2015) and Kane (2005) show a decrease
in the antiparallel geomagnetic field, Bs , before the occur-
rence of the minimum of Dst. While Gonzalez et al. (1994,
2004) and Burton et al. (1975) introduce an energy balance
equation where the Dst index and the rectified interplanetary
electric field (dv ·Bz) are related.

The study of the fractal dimension in various fields has
contributed to understanding diverse phenomena, adding a
new, interdisciplinary perspective to nonlinear systems. For
example, this approach has been used to study seismicity, to
describe the distribution of epicenter and hypocenters in a
given geographical zone (Pastén et al., 2011), or to consider
the relationship between the fractal dimension of the spatial
distributions of the aftershocks and the faults (Nanjo and Na-
gahama, 2004; Sahimi et al., 1993). It has also been used
in the study of various catastrophic events such as seismic
and epileptic shocks, where the fractality of the relevant time
series has been analyzed to extract information on precur-
sor activity (Eftaxias et al., 2006, 2008). In music, musical
pieces have been characterized through fractal dimensions
(Gündüz and Gündüz, 2005; Hsü and Hsü, 1990; Su and Wu,
2007). And in plasma physics, the use of fractal dimensions
to understand plasma properties is becoming increasingly
common (Chang, 1999; Macek et al., 2005; Szczepaniak and
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Macek, 2008; Chang and Wu, 2008; Neto et al., 2008; Mat-
erassi and Consolini, 2007; Zaginaylov et al., 2002; Carreras
et al., 2000; Yankov, 1997; Dimitropoulou et al., 2009; McA-
teer et al., 2010; Domínguez et al., 2014, 2017, 2018).

Fractal dimensions can be calculated from either time se-
ries or spatial patterns. For instance, the fractal dimension
of the time series of auroral electrojets (AEs), or from spa-
tial data such as solar magnetograms, has shown interest-
ing properties, being generally a non-integer value and less
than the Euclidean dimension (Aschwanden and Aschwan-
den, 2008a, b; Kozelov, 2003; McAteer et al., 2005). Several
studies have analyzed the relationship between the fractal
and multifractal dimension with physical properties, which
has provided a tool to predict events on the surface on the
Sun (solar flares), the solar wind, and the Earth’s magne-
tosphere (Dimitropoulou et al., 2009; Aschwanden and As-
chwanden, 2008a; McAteer et al., 2010, 2005; Uritsky et al.,
2006; Georgoulis, 2012; Conlon et al., 2008; Chapman et al.,
2008; Kiyani et al., 2007).

There are many different methods to calculate the frac-
tal and multifractal dimensions. In a previous work, we have
studied the temporal evolution of solar and geomagnetic ac-
tivity, by calculating a scatter-box-counting fractal dimen-
sion from solar magnetograms and Dst data (Domínguez
et al., 2014). The fractal dimension of the Dst analysis de-
creases during magnetic storms, an effect that is consistently
observed across several timescales, from individual storms
to a complete solar cycle. Our results suggest that this defi-
nition of fractal dimension is an interesting proxy for com-
plexity in the Sun–Earth system, not only for static data but
also when the evolution of solar and geomagnetic activities
are followed.

Moreover, in Domínguez et al. (2017), the authors show
that the fractal dimension and the occurrence of the bursts in
magnetic energy dissipation rate εb(t) computed in a mag-
netohydrodynamic (MHD) shell model integration have cor-
relations similar to those observed in geomagnetic and solar
wind data. In that work, the forcing terms of the MHD shell
model are provided by the solution of the Langevin equa-
tion, where a white noise is employed. That forcing, previ-
ously adopted, shows stationary statistical properties, hence
revealing its inadequacy to describe the effect of solar wind
on the magnetospheric activity. In order to mimic the evo-
lution of the magnetospheric forcing due to the solar wind,
in Domínguez et al. (2018) the MHD shell model has been
forced using magnetic and velocity field data measured in the
solar wind. This latter work shows a peak in the activity of
εb(t) near solar maximum, whereas the fractal dimension of
the forcing magnetic field time series has a minimum near
solar maximum.

Considering these results, in this paper we present an at-
tempt to describe the complex interaction between solar wind
and magnetosphere using a very simple model, where we
employ v · bz data to deduce a suitable forcing for the mag-
netic field evolution. In particular the fluctuations of v · bz

values inferred from solar wind data are introduced as the
noise in the Langevin equation. Then, the solution of this
latter equation provides a forcing that we introduce in the
magnetic field equation. Thus, by using data that are related
to the occurrence of geomagnetic activity, our aim is to in-
vestigate whether the statistical properties described in this
model evolve because of the evolution in the statistical prop-
erties of the forcing term. In particular, in this paper we study
whether there is a relationship between the fractality of the
forcing, and the activity and the fractality of the dissipation.

The paper is organized as follows. In Sect. 2 we present the
main features of the MHD shell model used to calculate the
magnetic energy dissipation rate εb(t), as well as the method
used to modify the forcing term of the model. In Sect. 3 we
describe the method to calculate the fractal dimension of the
fluctuation of v·bz used as a noise term in the Langevin equa-
tion. In Sect. 4 we describe the method to calculate the fractal
dimension of the magnetic forcing term, and the energy dis-
sipation rate obtained from the shell model. In Sect. 5 we
present the definitions of the activity parameters used to an-
alyze the energy dissipation rate. In Sect. 6, the results ob-
tained are presented and finally, in Sect. 7, our conclusions
are discussed.

2 Shell model

In general, shell models allow the nonlinear dynamics of
fluid systems to be dealt with, reproducing relevant features
of MHD turbulence even for high Reynolds numbers, which
involve a large computational cost in direct numerical sim-
ulations (Boffetta et al., 1999). This is done by means of a
set of equations – a simplified version of the Navier–Stokes
system – which greatly reduces the available degrees of free-
dom (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani,
1988).

In this work, we use the MHD Gledzer–Ohkitani–Yamada
(GOY) shell model, which has been shown to be adequate to
describe the dynamics of the energy cascade in MHD turbu-
lence (Lepreti et al., 2004), dynamo effect (Nigro and Car-
bone, 2010; Nigro and Veltri, 2011), statistics of solar flares
(Boffetta et al., 1999; Lepreti et al., 2004; Nigro et al., 2004),
finite-time singularities in turbulent cascades (Nigro and Car-
bone, 2015) and to model the fractal features of a magnetized
plasma (Domínguez et al., 2017, 2018).

This model is described in more detail in our previous
works (Domínguez et al., 2017, 2018). Below we focus on
the choice of forcing terms, which is relevant for the present
study.

In the model, the wave-vector space (k space) is divided
into N discrete shells of radius kn = k02n (n= 0,1, . . .,N ).
Then, two complex dynamical variables un(t) and bn(t),
representing, respectively, velocity and magnetic field incre-
ments on an eddy scale l ∼ k−1

n , are assigned to each shell.
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The following set of ordinary differential equations de-
scribes the dynamical behavior of the model (Lepreti et al.,
2004):

dun
dt
=−νk2

nun+ ikn

{
(un+1un+2− bn+1bn+2)

−
1
4
(un−1un+1− bn−1bn+1)

−
1
8
(un−2un−1− bn−2bn−1)

}∗
+ fn, (1)

dbn
dt
=−ηk2

nbn+ ikn
1
6

{
(un+1bn+2− bn+1un+2)

+ (un−1bn+1− bn−1un+1)

+ (un−2bn−1− bn−2un−1)
}∗
+ gn. . (2)

Here, ν and η are, respectively, the kinematic viscosity and
the resistivity; fn and gn are external forcing terms acting,
respectively, on the velocity and magnetic fluctuations.

Initially, velocities in the second and fourth shell are set to
complex random numbers, whereas the initial magnetic field
fluctuations are set to zero, bn(t = 0)= 0 (Domínguez et al.,
2017, 2018).

Based on Domínguez et al. (2017), where a comprehensive
analysis of the statistical properties of the shell model for var-
ious values of ν and η is carried out, we set ν = η = 10−4, as
it is in the range where the model is able to best reproduce
the intermittent behavior observed in magnetized plasmas.
Given the values of the dissipative coefficients ν and η, we
take N = 19, also consistent with the choices in Domínguez
et al. (2017, 2018), a value which guarantees a nonlinear
range sufficiently large to describe the system dynamics. We
then numerically integrate the shell model Eqs. (1)–(2), and
we can calculate the magnetic energy dissipation rate defined
as follows:

εb(t)= η

N∑
n=1

k2
n

∣∣∣b2
n

∣∣∣ . (3)

Note that a dissipation rate for the velocity field can also
be defined. However, this is not relevant to our model, as it
would be related to heating, whereas there is no equation for
temperature in our analysis. Magnetic storms, on the other
hand, are related to magnetic dissipation rates.

In previous work (Domínguez et al., 2017; Lepreti et al.,
2004; Nigro et al., 2004; Nigro and Carbone, 2010, 2015;
Nigro and Veltri, 2011; Nigro, 2013) the forcing terms were
obtained from the Langevin equation

df̃n
dt
=−

f̃n

τ0
+µ(t), (4)

where f̃n = fn or gn, τ0 is a correlation time introduced in a
Gaussian white noise µ of width σ . This provides a stochas-
tic way to drive turbulence in the model. However, turbulence

in space plasmas is not always subject to stationary drivers.
Such is the case, for instance, of the Earth’s magnetosphere.
This system is driven by the solar wind, which itself has its
own dynamics on short timescales due to local events such as
coronal mass ejections (CMEs), and on longer timescales as
the solar cycle. In this paper we deal with this property of the
drivers, by considering a non-stationary forcing of the shell
model.

One possible way of characterizing the stationarity of the
forcing given by Eq. (4) is by calculating its fractal dimen-
sion, which is a simple measure of the complexity of the time
series. Following Domínguez et al. (2014, 2017), a scatter
plot is built from the time series, and then the box-counting
fractal dimension of this plot is calculated and associated
with the time series. When this method is applied to the out-
put of Eq. (4) in various time windows, a value of D ∼ 1.7
is obtained. Its independence of the used time window is a
manifestation of the stationary character of the time series.

A first method to change the fractality of the forcing terms
was presented in Domínguez et al. (2018). In that case, from
two scalars – the flow speed and the average magnetic field
of the solar wind as obtained by OMNI (https://cdaweb.gsfc.
nasa.gov/istp_public/, last access: 4 March 2020), two com-
plex series f1 and g1 were built, which were used as forcing
of the first shell in Eqs. (1)–(2). In this way, it was shown
that the activity of the resulting εb(t) time series has a peak
near solar maximum. However, the magnetic field time series
seems to be the most sensitive, because its fractal dimension
seems to correlate with the solar cycle much more than the
fractal dimension of the velocity field time series. In fact,
the latter does not show any particular sensitivity to the solar
magnetic activity.

We now explore a second possibility to change the frac-
tality of the forcing terms, namely, changing the method to
calculate the stochastic term for magnetic forcing, which cor-
responds toµ(t) in Eq. (4). The conventional method to solve
this equation, as mentioned above, considers µ(t) as a white
Gaussian noise (Nigro et al., 2004; Lepreti et al., 2004).

Usually the forcing is applied only on the velocity equa-
tion, while in Domínguez et al. (2017) this forcing is consid-
ered for both the velocity and magnetic field equation.

Here, we will preserve the Gaussian noise for the velocity
field, while for the magnetic field forcing we will use the
fluctuations in v · bz,

µ(t)= v · bz−〈v · bz〉, (5)

where v and bz are the velocity and z-component magnetic
field of the solar wind, respectively. This difference between
the velocity and magnetic field forcing is because, as men-
tioned before, the velocity time series does not show any
relation with the solar magnetic activity (Domínguez et al.,
2018).

The data of the solar wind used in this work are obtained
from the OMNIWeb Plus data service (https://cdaweb.gsfc.
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nasa.gov/istp_public/, last access: 4 March 2020). We con-
sider this source because OMNI is a compilation of data ob-
tained from many space missions (IMP 8, Geotail, Wind and
ACE) of the magnetic field of the solar wind near the Earth.
More specifically, we use data of v and bz at 1 AU of distance
with 1 min of resolution. The coordinate system of the data
is the geocentric solar ecliptic (GSE). Thus, the z axis is the
projection of the axis of the Earth’s magnetic dipole (positive
to the north) on the plane perpendicular to the x axis (towards
the Sun).

Given that the forcing term must be a complex number in
Eq. (2), a random phase ϕ is needed for each datum that is
calculated from Eq. (4) for the magnetic case. Then,

fb(t)= f̃b(t)e
2πiϕ, (6)

where the amplitude f̃b(t) corresponds to the solution of the
Langevin equation using the modified µ(t), and fb(t) is the
force term used in the shell model code.

In order to account for the variability with solar activity,
we generate 13 time series of the magnetic energy dissipa-
tion, each one using the data corresponding to the 13 years
of the 23rd solar cycle (1996 to 2008). Once the time series
are generated, we define four indices to measure the activity
of the magnetic energy rate (εb) and analyze the relationship
between these and the fractality of the data.

3 Box-counting dimension of the fluctuation of v · bz

In this work, we use the same definition as in Domínguez
et al. (2014, 2017) for the scatter plot box-counting fractal
dimension. The fractal dimension for each time series of the
fluctuation of solar wind data (see Eq. 5) is estimated from
their scatter diagram. If µi is the ith µ datum in the series,
and N is the total number of data, the scatter diagram is a
plot of µ1+(i+1)j versus µ1+i·j , for 0≤ i ≤ (N − 1)/j and
with a j integer.

Then, the scatter diagram is divided in square cells of a
certain size ε, and we count the number N(ε) of cells which
contain a point. Next, we consider several values of ε, and
we find the range of ε where log(N(ε)) scales linearly with
logε. If the slope in this region is given by −Dj , then in this
region,

N(ε)∝ ε−Dj . (7)

Figure 1 illustrates the three steps to calculate the fractal
dimension, using data for year 2000. Two values of j are
used as an example, j = 1 and j = 10.

4 Box-counting dimension of the magnetic forcing term
and the energy dissipation rate

We used the same definition as in the previous section to cal-
culate the fractal dimension of f̃b(t) and εb(t). Using 1 year

of data of v·bz fluctuations as the magnetic field forcing term,
we obtain a f̃b(t), and an energy dissipation rate time series.
Then, for a given data window in this series, we construct the
scatter plot and calculate its box-counting fractal dimension
as described in Sect. 3.

Figure 2 illustrates these three steps to calculate the frac-
tal dimension of the εb time series. We can see that due to
the very high time resolution in our computer simulation,
necessary to properly solve the shell model equations, the
change in εt (t) at each iteration is very small. This leads to
a scatter plot for j = 1, which is essentially a straight line
of slope 1, and thus to a box-counting dimension equal to 1
as well. However, for larger values of j the scatter diagram
presents a nontrivial structure.

5 Activity parameters

Some studies have reported a variation in the (multi)fractal
features of the solar wind within the solar cycle (Szczepaniak
and Macek, 2008; Macek, 2006, 2007; Macek and Wawrza-
szek, 2009). On the other hand, it is well established that
geomagnetic activity increases during solar maximum, and
various models attempt to correlate specific features of the
solar wind with geomagnetic activity (Gonzalez et al., 2004;
Rathore et al., 2014; Kane, 2005; Huttunen et al., 2002; Ran-
garajan and Barreto, 2000; Echer et al., 2004). In this section
we investigate whether the amount of complexity in the shell
model forcing (as measured by its fractal dimension) some-
how correlates with the level and complexity of the dissipa-
tion activity.

To this end, we need to define activity parameters for
the output time series. We use the same parameters as in
Domínguez et al. (2018). First, a threshold ε̃ is chosen, so
that an “active state” is said to appear whenever εb(t) > ε̃.
Then, four activity parameters are defined:

– N is the number of data above that threshold.

– 〈εb〉 is the average of the data.

– 〈εb〉up is the average of the data above the threshold.

– max(εb) is the maximum value of εb.

The threshold was defined as follows:

ε̃b = 〈εb〉+ n · σ, (8)

where σ is the standard deviation of the time series and n is
a number between 1 and 10. (In Domínguez et al., 2017 only
n= 5 and n= 10 were considered.)

6 Results

We first study the fractal dimension of the noise term used
to solve the magnetic Langevin equation, namely µ(t). In
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Figure 1. (a) v · bz−〈v · bz〉 for the year 2000; (b) scatter diagram; (c) log–log plot of Eq. (7). Results for two values of the data sampling
are shown: j = 1 (red points) and j = 10 (blue points).

Figure 2. (a) εb for the year 2000; (b) scatter diagram; (c) log–log plot of Eq. (7). Results for three values of the data sampling are shown:
j = 1 (red points), j = 500 (blue points), and j = 1000 (black points).

general, the fractal dimension of the time series is expected
to depend on the value of the time delay j . Thus we study
its dependence on j , as well as its dependence on the solar
cycle. Results are shown in Fig. 3.

Figure 3a shows that there is a general trend for the fractal
dimension to decrease with j . Previous results based on the
shell model simulation (Domínguez et al., 2017) show that
active and quiet states can be distinguished by their different
behavior with j (decreasing or increasing its fractal dimen-
sion for intermediate values of j , respectively). However, all
curves in Fig. 3a have the same trend, so it would seem that
the fractal properties of the time series do not depend on the
stage of the solar cycle.

However, after adding the information on sunspot activity,
results are more clear. In order to show that, we take sunspot
number data obtained from National Geophysical Data Cen-
ter, prepared by the US Department of Commerce, NOAA,
Space Weather Prediction Center (SWPC) (ftp://ftp.swpc.
noaa.gov/pub/weekly/RecentIndices.txt, last access: 4 March
2020). By inspection, we note that the yearly average num-
ber of sunspots near solar minimum is below 40, whereas
it quickly increases above 50 when approaching solar max-
imum, reaching 178 in 2002. Thus we set Ns = 40 as the
threshold. If the number of sunspots in a year is greater than
Ns, the year is classified as closer to solar maximum; if the
number of sunspots is less than Ns, it is classified as closer

to solar minimum. With this criterion, the years 1996, 1997,
and 2006–2008 are classified in the minimum and the years
1998–2005 in the maximum of the solar cycle. The result
is shown in Fig. 3b, where we clearly see that, on average,
the fractal dimension of the fluctuations µ(t) discriminates
between solar cycle minimum and maximum curves. The
Fig. 3b also shows that, when j increases, the distinction
between the minimum and maximum years improves. Then,
henceforward we use j = 100 to illustrate our findings.

We intend to compare the degree of complexity of the in-
put time series with the level of activity in the dissipated
magnetic energy. We have proposed four ways to measure
activity in Sect. 5. For each year of the 23rd solar cycle, the
solar wind fluctuation time series µ(t) is used to force the
shell model, and the resulting activity in the output is mea-
sured.

As stated in Sect. 5, there are two parameters of the activ-
ity that depend of the threshold ε̃b. With the aim of selecting
the appropriate value of n in Eq. (8), in Fig. 4 we first show
the results for two of the activity parameters N and 〈εb〉up.
We note that for n= 5, 〈εb〉up has a clear peak near the solar
maximum (year 2002, Fig. 4c). If the threshold is too large
(Fig. 4d), sometimes no data are found above it, and the ac-
tivity parameter drops to zero. In the case of N (Fig. 4a, b),
the curves for all values of n yield similar results. No curve
has a clear maximum near solar maximum, suggesting that
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Figure 3. Box-counting dimension of µ(t) for different values of j . (a) Curves for each year of the 23rd solar cycle. (b) Curves are
distinguished for years corresponding to the maximum (black lines: years 1998 to 2005) or minimum (red lines: years 1996, 1997, and
2006 to 2008) of the solar cycle.

Figure 4. N and 〈εb〉up calculated from the 13 time series of µ(t) for different values of n. For clarity, separate plots are shown for two sets
of values for n: from 0 to 5 (a, c), and from 5 to 10 (b, d). The grey region corresponds to years of maximum solar activity, as described in
the text.

this parameter is rather insensitive to solar activity. Note that
in Domínguez et al. (2018),N was the parameter that showed
the strongest correlation with the solar cycle. This highlights
the complexity in the definition of a suitable metric for ac-
tivity. On the other hand, Fig. 4 shows that the model does
respond to various activity levels in the forcing time series,
regardless of whether such forcing involves the fields them-
selves (Domínguez et al., 2018) or their fluctuations (this
work).

Based on the previous discussions, we conclude that a
moderate value of n is appropriate when defining the activity
parameters, so that the anomalous behavior in Fig. 4b, d is
avoided. We will take n= 5.

We now compare the various activity parameters with the
fractal dimension of µ(t). Figures 5 and 6 show the frac-
tal dimension of µ(t), and one of the activity parameters for
each time series. We see that, in general (except for N ), the
maximum of the activity parameters computed for εb(t) ap-
proximately occurs in the years around the solar maximum.
Moreover, the fractal dimension of µ(t) decreases during the
same period.

We perform a similar analysis, but for the fractal dimen-
sion of the magnetic forcing term, f̃b(t) in Eq. (6). That is,
we calculate the dependence of the fractal dimension on j for
the f̃b(t) time series and relate it to the stage within the solar
cycle as was done in Fig. 3b. Results are shown in Fig. 7.

Nonlin. Processes Geophys., 27, 175–185, 2020 www.nonlin-processes-geophys.net/27/175/2020/
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Figure 5. Box-counting dimension of µ(t) for the solar wind with j = 100 (black line), and the activity of the dissipated magnetic energy
εb(t) (red line), as measured by the parameter N (a) and max(εb) (b). Threshold to define activity is n= 5 (see Eq. 8). The grey region
corresponds to years of maximum solar activity, as described in the text.

Figure 6. Same as Fig. 5, but for activity parameters 〈εb(t)〉 (a) and 〈εb〉up (b). The grey region corresponds to years of maximum solar
activity, as described in the text.

Figure 7. Box-counting dimension of magnetic forcing term f̃b(t)
for different values of j . Curves are distinguished for years corre-
sponding to maximum (black lines: years 1998 to 2005) or mini-
mum (red lines: years 1996, 1997, and 2006 to 2008) of the solar
cycle.

The conclusion from Fig. 7 is similar to the one deduced
in the previous analysis for µ(t) (Fig. 3). The general trend
of the fractal dimension is to decrease with j , and the fractal
dimension of the magnetic forcing during years close to solar
minimum is, in general, larger than the one measured during
the years near solar maximum. In Fig. 7, this is more clear
for j > 300.

Considering the above results, we now choose j = 500 for
the following figures. In Figs. 8 and 9, we compare the fractal
dimension of the magnetic forcing term f̃b(t) with j = 500

for each year, with the same activity parameters of Figs. 5
and 6. We can see that, like the previous analysis, the fractal
dimension of the magnetic forcing term has a minimum in
the years of maximum activity. Also, consistent with Figs. 5
and 6, results for N are less clear, as seen in Fig. 8.

Finally, we perform the analysis of the fractal dimension
of the magnetic energy dissipation rate εb(t) for different val-
ues of j . This latter fractal dimension, depicted in Fig. 10,
does not show any particular dependence on the solar cycle,
at least during the 23rd solar cycle here considered.

It is important to note that for small values of j , the fractal
dimension is essentially constant. In fact, for j = 1 the fractal
dimension is always one for all years, due to the scatter dia-
gram being exactly a line (see Fig. 2). Unlike Fig. 7, Fig. 10
does not suggest a robust correlation between the fractal di-
mension of εb(t) and the solar cycle, for any value of j .

Therefore, the time-dependent fractal dimension that char-
acterized the forcing adopted here leads to noticeable varia-
tions in the intermittency of the magnetic energy dissipation
rate, as measured by the activity parameters defined above.
On the other hand, the same quantity, namely magnetic en-
ergy dissipation rate, does not show any significant variations
of its fractal dimension during the cycle considered.

It is interesting to discuss Figs. 3, 7, and 10 in the light of
comparative studies of complexity in the solar wind and the
magnetosphere, although this work attempts to make a very
simplified model of the interaction between the solar wind
and the Earth’s magnetosphere. In effect, Figs. 3 and 7 show
the complexity of the drivers of the shell model, which we
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Figure 8. Box-counting dimension of magnetic forcing term for j = 500 with respective activity of εb(t) (red lines): N (a) and max(εb) (b),
with n= 5. The grey region corresponds to the maximum period of the solar cycle, as described in the text.

Figure 9. Box-counting dimension of magnetic forcing term for j = 500 with respective activity of εb(t) (red lines): 〈εb(t)〉 (a) and
〈εb〉up (b), with n= 5. The grey region corresponds to the maximum period of the solar cycle, as described in the text.

Figure 10. Box-counting dimension of energy dissipation rate for
different values of j . Curves are distinguished for years correspond-
ing to maximum (black lines: years 1998 to 2005) or minimum (red
lines: years 1996, 1997, and 2006 to 2008) of the solar cycle.

may loosely associate with the solar wind driving the magne-
tosphere, whereas Fig. 10 shows the complexity of the output
of the shell model, which may represent the magnetospheric
activity, following the analogy.

Thus, these plots show that the complexity of the driven
system (Fig. 10) is more similar to the complexity of the
driver (Figs. 3, 7) during solar maximum than during solar
minimum, and that the complexity of the driven system is
typically lower than the complexity of the driver. This is dif-
ferent from results in Balasis et al. (2006), where a study in
terms of Hurst exponents was made, finding that complexity

in the magnetosphere is larger than in the solar wind. How-
ever, it should also be noted that in our work, longer-term
trends are studied (1-year windows), instead of timescales of
the order of the duration of geomagnetic storms. The differ-
ent timescales, and the use of different metrics for complex-
ity, could be relevant to compare both results.

7 Conclusions

In this paper we present the results of an MHD shell
model where we force the velocity field fluctuations and the
magnetic field fluctuations differently. In particular, while
the forcing employed in the velocity equation is a time-
correlated Gaussian noise, for the magnetic field equation we
adopt the solution of a Langevin equation where the fluctua-
tions of v ·bz, computed using solar wind data, are introduced
in this equation instead of a stochastic term. This produces a
forcing on the magnetic field equation that mimics the time-
dependent solar wind action on Earth’s magnetosphere dur-
ing a solar cycle. This description is certainly an oversim-
plification of the complex dynamics that determine the in-
teraction between solar wind and Earth’s magnetosphere, but
it provides a possible approach if we are interested only in
the fractal properties of the time series of the characteristic
parameters.

In this framework, we have analyzed the relationships of
the activity of the magnetic energy dissipation rate obtained
in the shell model, with the fractal dimension of its input and
output time series. Specifically, our defined activity parame-
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ters are compared with the fractal dimension of the fluctua-
tions of the solar wind v · bz data, the magnetic force term,
and the time series of the magnetic energy dissipation rate.

Both the fluctuation term, µ(t), and the resulting forcing
term (Eqs. 5 and 6) have a fractal dimension which is well
correlated with the solar cycle, as shown in Figs. 3 and 7, in-
dicating that information on solar activity is actually present
in the fractal dimension of µ(t) and resulting forcing. This is
not the case for the magnetic energy dissipation rate, as can
be seen in Fig. 10. Thus, this complexity measure produces
signatures of the corresponding solar activity when applied
to the input of the shell model, but does not produce them
when applied to the output of the model.

For the quantities which possess a time-dependent fractal
dimension, namely µ(t) and the forcing term, this dimension
exhibits a minimum near solar maximum. As to the activ-
ity of the output, all proposed metrics – except N – seem to
correlate with the solar cycle, showing a peak near the so-
lar maximum. This suggests that the complexity of the noise
term of Langevin equation may have, within the simulation,
a noticeable effect in the activity of the magnetic energy dis-
sipation rate, although the fractal dimension, as calculated
here, is not a suitable metric for that output activity.

Despite this, it is interesting to see that some results are
consistent with previous studies, based directly on data. Frac-
tal dimensions in Figs. 3 and 7 measure the complexity of
the drivers of the shell model, which we may loosely asso-
ciate with the solar wind driving the magnetosphere, whereas
Fig. 10 measures the complexity of the output of the shell
model, which may represent the magnetospheric activity, fol-
lowing the analogy. Results are similar to those calculated for
the solar wind (Domínguez et al., 2018) and for the Dst index
(Domínguez et al., 2014), in the sense that values of the frac-
tal dimensions suggest that the complexity of the solar wind
is larger than the complexity of the magnetosphere, measured
using the same box-counting approach as presented here.

Given the complex dynamics in the system studied, we
should not expect that a single metric contains all the infor-
mation, and thus results may depend on the method used.
For instance, Hurst exponents are used in Balasis et al.
(2006), which suggests that complexity in the magnetosphere
is larger than in the solar wind. On the other hand, the
timescales observed are also different from those in Balasis
et al. (2006), and this can also be relevant to evaluate com-
plexity in a physical system.

Nevertheless, it is interesting that various studies have con-
sidered the use of fractal dimensions, using several strate-
gies, as a means to extract information on solar wind–
magnetosphere interaction, either in the sense of precursor
activity (Donner et al., 2018; Balasis et al., 2006), or longer-
term trends (Domínguez et al., 2014, 2018). Simulation-
based studies may help to understand to what extent com-
plexity measures may be relevant for this task.

Data availability. OMNI data for the flow speed and average mag-
netic field of the solar wind can be downloaded from the website
of the Coordinated Data Analysis Web (CDAWeb), Goddard Space
Flight Center, https://cdaweb.gsfc.nasa.gov/istp_public/ (last ac-
cess: 4 March 2020, OMNIWeb Plus Data Service, 2020). Sunspot
number data can be downloaded from the website of the Space
Weather Prediction Center (SWPC, 2020), ftp://ftp.swpc.noaa.gov/
pub/weekly/RecentIndices.txt (last access: 4 March 2020).
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