Articles | Volume 26, issue 4
https://doi.org/10.5194/npg-26-445-2019
https://doi.org/10.5194/npg-26-445-2019
Research article
 | 
26 Nov 2019
Research article |  | 26 Nov 2019

A fast approximation for 1-D inversion of transient electromagnetic data by using a back propagation neural network and improved particle swarm optimization

Ruiyou Li, Huaiqing Zhang, Nian Yu, Ruiheng Li, and Qiong Zhuang

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Solid earth, continental surface, biogeochemistry | Techniques: Big data and artificial intelligence
Stability and uncertainty assessment of geoelectrical resistivity model parameters: a new hybrid metaheuristic algorithm and posterior probability density function approach
Kuldeep Sarkar, Jit V. Tiwari, and Upendra K. Singh
Nonlin. Processes Geophys., 31, 7–24, https://doi.org/10.5194/npg-31-7-2024,https://doi.org/10.5194/npg-31-7-2024, 2024
Short summary

Cited articles

Dai, Q., Jiang, F., and Dong, L.: Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm, J. Cent. South. Univ., 21, 2018–2025, https://doi.org/10.1007/s11771-014-2151-9, 2014. 
Fernández Martínez, J. L., García Gonzalo, E., Fernández Álvarez, J. P., Kuzma, H. A., and Menéndez Pérez, C. O.: PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case, J. Appl. Geophys., 71, 13–25, https://doi.org/10.1016/j.jappgeo.2010.02.001, 2010. 
Godio, A. and Santilano, A.: On the optimization of electromagnetic geophysical data: Application of the PSO algorithm, J. Appl. Geophys., 148, 163–174, https://doi.org/10.1016/j.jappgeo.2017.11.016, 2018. 
Jha, M. K., Kumar, S., and Chowdhury, A.: Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique, J. Hydrol., 359, 71–87, https://doi.org/10.1016/j.jhydrol.2008.06.018, 2008. 
Jiang, F., Dai, Q., and Dong, L.: An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging, J. Cent. South. Univ., 23, 2129–2138, https://doi.org/10.1007/s11771-016-3269-8, 2016a. 
Download
Short summary
The chaotic-oscillation inertia weight back propagation (COPSO-BP) algorithm is proposed for transient electromagnetic inversion. The BP's initial weight and threshold parameters were trained by COPSO, overcoming the BP falling into a local optimum. Inversion of the layered geoelectric model showed that the COPSO-BP method is accurate and stable and needs less training time. It can be used in 1-D direct current sounding, 1-D magnetotelluric sounding, seismic-wave impedance and source detection.