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Abstract. As one of the most active nonlinear inversion
methods in transient electromagnetic (TEM) inversion, the
back propagation (BP) neural network has high efficiency
because the complicated forward model calculation is un-
necessary in iteration. The global optimization ability of the
particle swarm optimization (PSO) is adopted for amending
the BP’s sensitivity to its initial parameters, which avoids
it falling into a local optimum. A chaotic-oscillation iner-
tia weight PSO (COPSO) is proposed for accelerating con-
vergence. The COPSO-BP algorithm performance is vali-
dated by two typical testing functions, two geoelectric mod-
els inversions and a field example. The results show that the
COPSO-BP method is more accurate, stable and needs rela-
tively less training time. The proposed algorithm has a higher
fitting degree for the data inversion, and it is feasible to use
it in geophysical inverse applications.

1 Introduction

The transient electromagnetic (TEM) method applies the sec-
ondary receiving voltage induced by the rapid switching of
pulse current, and it then deduces the geoelectrical parame-
ters consisting of the resistivities and thicknesses of the lay-
ers. The later is a typical TEM inversion issue with nonlinear
features. The linear inversion method was simple and widely
used through linearization processes, yet it is extremely de-
pendent on the selection of initial parameters and results
in poor inversion accuracy. Hence, the nonlinear inversion

methods have attracted more geophysicists’ attention in re-
cent years.

The artificial neural network (ANN) is one of the most ac-
tive nonlinear inversion methods, and it has very high com-
putation efficiency because the complicated forward model
calculation is unnecessary in this iteration. All the geoelec-
trical parameters and the forward model relations are im-
plied in the weight and threshold parameters of ANN. And
it is different from the nonlinear Monte Carlo method with a
global space search solution (He et al., 2018; Jha et al., 2008;
Pekşen et al., 2014; Sharma, 2012; Tran and Hiltunen, 2012).
Srinivas et al. (2012) compared the inversion performance
of back propagation (BP), the radial basis function (RBF)
and the generalized regression neural network (GRNN) in
vertical electrical sounding data, then established a 1-D in-
version model with BP and finally realized the parameter
inversion. Maiti et al. (2012) proposed a Bayesian neural-
network training method in 1-D electrical sounding. Jiang
et al. (2018) improved the training method for the kernel
principal-component wavelet neural network and achieved
the resistivity imaging. Jiang et al. (2016a) produced a learn-
ing algorithm based on information criterion (IC) and par-
ticle swarm optimization for RBF network which improves
the global search ability. Johnson and Aizebeokhai (2017)
utilized neural-network method to invert multi-layer geore-
sistivity sounding. Jiang et al. (2016b) presented a prun-
ing Bayesian neural-network (PBNN) method for resistiv-
ity imaging and solved the instability and local minimiza-
tion problems. Raj et al. (2014) solved nonlinear appar-
ent resistivity inversion problems with ANN. The ANN has
been widely applied in electric-prospecting data interpre-
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Figure 1. Inertial weight curves comparison.

tation for its powerful fitting ability. However, the neural-
network method is sensitive to its initial parameter settings
and falls easily into a local minimum. Many improved meth-
ods were proposed for balancing the convergence rate and
inversion quality. Zhang and Liu (2011) proposed ant colony
optimization for ANN, and they applied high-density resis-
tivity and acquired smaller inversion errors and higher deter-
minant coefficients. Dai et al. (2014) suggested a differen-
tial evolution (DE) for BP which enhanced the global search
ability. Rosas-Carbajal et al. (2014) introduced the genetic
algorithm for ANN.

The particle swarm optimization (PSO) has a simple struc-
ture, fast convergence rate, high accuracy and global op-
timization ability. Fernández et al. (2010) successfully in-
troduced the PSO in a 1-D resistivity inversion. Godio and
Santilano (2018) applied it in a geophysical inversion and
deduced a depth resistivity earth model. Due to the PSO’s
global searching performance, the BP’s initial weights and
thresholds can be trained by the PSO, and the BP’s global
optimization ability can be improved. Compared to the stan-
dard PSO (SPSO), a chaotic-oscillation inertia weight PSO
(COPSO) can accelerate the convergence rate in the early
stage, and it was proposed naturally (Shi et al., 2009).

The paper structure is as follows: the principles of the
PSO algorithm with different inertia weights schemes, the
BP neural network and the proposed COPSO-BP algorithm
are given in Sect. 2. Then, the COPSO-BP algorithm perfor-
mance is validated by two typical testing functions in Sect. 3.
And in a later section, inversion simulations of three-layer
and five-layer geoelectric models are carried out; the hidden-
layer neuron numbers determining method is put forward;
and algorithm performance is compared.

Figure 2. Three-layer BP neural-network structure.

2 Principle of COPSO-BP algorithms

2.1 Chaotic-oscillation PSO algorithm

For an n-dimensional optimization problem, it is supposed
that the position (resistivity and thickness for layered-model
parameter inversion) and velocity (update speed) of the ith
particle (global search group number) at time t are xi = (xi1,
xi2, . . . , xiN ) and vi = (vi1, vi2, . . . , viN ), respectively. Then,
at time t+1, they can be calculated by the iterations as

vt+1
id = ω · v

t
id+ c1r1(p

t
id− x

t
id)+ c2r2(p

t
gd− x

t
id), (1)

xt+1
id = x

t
id+ v

t+1
id , (2)

where r1 and r2 are random values evenly distributed in the
interval (0,1), c1 and c2 are learning factors (usually equal to
2), and pid and pgd are the individual and global maximum
values.

The inertia weight parameter ω affects the algorithm per-
formance seriously. A fixed weight always was used in the
early time, and then various dynamic weights were proposed.
Shi et al. (2010) have summarized several methods as

ω1(t)= ωs− (ωs−ωe)t/Tmax, (3)

ω2(t)= ωs− (ωs−ωe)(t/Tmax)
2, (4)

ω3(t)= ωs− (ωs−ωe)
[
2t/Tmax− (t/Tmax)

2
]
, (5)

where ωs and ωe are the start and end weight. The t and Tmax
are the current and maximum iterations. The above weights
are smooth and monotonically decreasing. In this paper, we
proposed a decreasing oscillation weight scheme which was
based on the chaotic logistic equation. Its specific calculation
formula is

xt+1 = µxt (1− xt ) t = 0,1,2, . . .,n, (6)
ωc (t)= ωe+ (ωs−ωe)

(
0.99t · xt

)
, (7)

where µ is the control parameter. A complete chaos state is
established for x ∈(0,1) and µ= 4, and an inertia weight is
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Figure 3. Training error curves of the SPSO-BP and COPSO-BP algorithms.

then obtained from Eq. (7). Numerical experiments were car-
ried out correspondingly and showed that the initial value
of x0 has little effect on the inertia weight ω. The inertia
weight comparison was shown in Fig. 1, where x0 = 0.234
and µ= 4 for chaotic oscillation.

2.2 BP neural network

The BP neural network has a multi-layer feed-forward struc-
ture, and a typical three-layer network is shown in Fig. 2 (Li
et al., 2009).

For Fig. 2, x1,x2, . . . , xn are the input values, y1, y2, . . . ,
ym are the predicted outputs, andwij andwjk are the network
weights. The threshold parameter α is defined in the hidden
layer with its output,

Hj = f

(
n∑
i=1

wijxi −αj

)
j = 1,2, . . ., l, (8)

where l is the hidden-layer node numbers, f is the activation
function with different expressions, and the most widely used
is a sigmoid-type function. The predicted output for the kth
unit is calculated by

Ok =

l∑
j=1

Hjwjk − bk, (9)

and parameter b is the output threshold. Then the prediction
error can be determined based on the predicted output Ok
and the expected output Tk , which is ek = (Tk −Ok)Ok(1−
Ok). The updated formula for weights and thresholds is the
following:
wij = wij + ηHj (1−Hj )xi

∑m
k=1wjkek

wjk = wjk + ηHj ek
αj = αj + ηHj (1−Hj )

∑m
k=1wjkek

bk = bk + ek

, (10)

where i is 1,2, . . . , n, j is 1,2, . . . , l, k is 1,2, . . . , m and η is
the learning rate.

2.3 BP neural network with the COPSO algorithm

The initial parameters are chosen randomly, which affects the
convergence rate, learning efficiency and perhaps falling into
a local minimum. The chaotic-oscillation PSO (COPSO) has
a much better global optimization capability; therefore, the
COPSO algorithm is proposed to optimize the initial weight
and threshold of the BP. The COPSO-BP pseudo-codes are
briefly described in Algorithm 1.

The formula for calculating the ith particle fitness is de-
fined as

fi =
1
S

S∑
s=1

m∑
j=1

(
Ysj − Ŷsj

)2
, (11)

where S is the number of training set samples,m is the output
neurons number, Ysj is the j th true output of the sth sample,
and Ŷsj is the corresponding predicted output.

3 Algorithm testing

In order to investigate the COPSO-BP performance and reli-
ability, Rosenbrock and Bohachevsky testing functions were
adopted, which are typical non-convex functions and mainly
evaluate the performance of unconstrained algorithms. How-
ever, due to the random nature of the function, it is not easy
to solve and has a global minimum function value of zero.

3.1 Rosenbrock function

f1(x)= 100×
(
x2

1 − x2

)2
+ (1− x1)

2,xi

∈ [−10,10] , i = 1,2 (12)

3.2 Bohachevsky function

f2 (x)= x
2
1 + x

3
2 − x1x2x3+ x3− sin

(
x2

2

)
− cos

(
x1x

2
3

)
,xi ∈ [−2π,2π ] , i = 1,2,3 (13)
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Using the standard PSO-BP (SPSO-BP) with linear decreas-
ing inertia weight in Eq. (3), the COPSO-BP tests were car-
ried out. The three-layer BP with an n-s-1 structure is con-
structed with different hidden nodes. The PSO parameters
are the population size M = 60, learning factors c1 = c2 =

2.0, maximum iteration Tmax = 30, inertia weight ωs = 0.9,
ωe = 0.4, x0 = 0.234 and µ= 4 for chaotic parameters, and
the search dimensionD = n×s+s×1+s+1, which includes
all the neuron weights and thresholds. For BP network, 150
training samples and 50 testing samples were randomly pro-
duced within the variable range. The training error is defined
as

E =
1
S

S∑
s

(Ts −Os)
2, (14)

where S is the training samples number and Ts andOs are the
expected and predicted outputs for training sample s, respec-
tively. The network structures with minimum training errors
for the Rosenbrock and Bohachevsky functions are 2-7-1 and

3-6-1, respectively. The simulation is performed 20 times for
each testing function with the SPSO-BP and COPSO-BP al-
gorithms. The numerical result was shown in Table 1. One
of the evolutionary training error curves (randomly selected
once in 20 times) was shown in Fig. 3, and the fitting curves
of the COPSO-BP algorithm were shown in Fig. 4.

It can be seen in Table 1 that although both the SPSO-
BP and COPSO-BP algorithms can acquire relatively high
accuracy for testing functions, the COPSO-BP algorithm is
slightly better than the SPSO-BP algorithm. However, the
COPSO-BP algorithm has a better convergence rate and opti-
mization efficiency in the early stage in Fig. 3. Therefore, the
SPSO-BP and COPSO-BP algorithms have a strong learning
ability, good stability and generalization ability, which will
be suitable for TEM inversion.
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Table 1. Comparison of the SPSO-BP and COPSO-BP algorithms for testing functions.

SPSO-BP COPSO-BP

Testing Average Optimal Average Optimal
functions value value value value

Rosenbrock 2.375× 10−3 2.300× 10−5 1.201× 10−3 2.410× 10−6

Bohachevsky 0.225 1.024× 10−3 0.193 3.360× 10−4

Figure 4. Fitting curves of the COPSO-BP algorithm.

4 Layered-model and parameter analysis

4.1 Forward model

According to the derivation of Kaufman and Keller (1983),
the frequency response of the central loop source for the lay-
ered model takes the following Hankel transform:

Hz(ρ,ω)= Ia

∞∫
0

m2

m+m1/R
∗

1
J1 (mρ)dm, (15)

where a is the radius of the transmitting coil, I is the ex-
citation current, ρ is the center distance between the trans-
mitting coil and the receiving coil, J1(mρ) is the 1st-order
Bessel function, m is the integral variable, m1 is equal to
(m2-k2

1)
1/2, k1 is the conduction current, σ1 is the conductiv-

ity, k1 is equal to −iωµσ1, and R∗1 is the first-layer apparent
resistivity conversion function, which can be obtained by the
following recurrence formula: R∗n = 1

R∗j =
mjR

∗

j+1+mj+1th(mjhj )
mj+1+mjR

∗

j+1th(mjhj )
. (16)

There is no analytical solution for the time-domain response
for the layered model; it can only be solved by numerical cal-
culation. The Hankel transform in formula (15) is calculated
by an improved digital filtering algorithm with 47 points, the
J1 filter coefficient, and then the time response can be ob-

tained using the Gaver–Stehfest transform as follows:

Hz(ρ, t)=
ln2
t

N∑
n=1

KnHz(ρ,sn), (17)

where sn is equal to (ln2/t)× n, Kn is the coefficient and N
is determined by the computer bits, generally N = 12.

The ramp excitation current of TEM is

I (t)=


0, t < 0

t/T1,0≤ t < T1
1,T1 < t

, (18)

where T1 is the turn-off time, and the Laplace transform is

I (s)=
1
T1s2 −

1
T1s2 e

−T1s =
1
T1s2

(
1− e−T1s

)
. (19)

Therefore, for a specific layered model, the apparent resistiv-
ity conversion function R∗1 is firstly calculated by the recur-
rence in Eq. (16) based on geoelectric structure parameters.
And then the frequency response at fixed point Hz(ω) is cal-
culated by a Hankel transform as in Eq. (15). For ramp exci-
tation, the Laplace transform of Hz(s) should multiplied by
I (s). Finally, the time responseHz(t) is obtained by a Gaver–
Stehfest transform in Eq. (17). So the Hz(t) is obtained by a
Gaver–Stehfest transform, a Hankel transform and a recur-
rence calculation, and it is somewhat computationally con-
suming.

However, the vertical magnetic fieldHz(t) is the actual ob-
served signal in the transient electromagnetic method in en-
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Figure 5. Influence of hidden-layer nodes on R2 for different geoelectric models.

Figure 6. Distribution of resistivity ρ1 and thickness h1 in training samples.

gineering applications. It is the inversion input, and the out-
puts are geoelectric structure parameters. A method which
can avoid the complicated forward model calculation is of
great importance in algorithm efficiency.

4.2 BP network design and the COPSO algorithm

For BP structure, the output nodes are determined by the
number of inversion geoelectrical parameters, the input
nodes are determined by the samples number of Hz(t), and
the hidden nodes vary according to approximation perfor-
mance. As a three-layer or five-layer geoelectric model, its
geoelectrical parameters are five (three resistivity and two
thickness parameters) or nine (five resistivity and four thick-
ness parameters); the output nodes are five or nine, corre-
spondingly. The characteristic samplings ofHz(t) are chosen
as 10 or 20, which are determined by the model’s complexity,
with more layers meaning more sampling points needed. The
10 samplings were selected in this paper, hence with 10 input
nodes. The hidden-layer neuron number is directly related to
the weight and threshold parameter amount and greatly af-
fects the BP performance. An appropriate hidden-node num-
ber is necessary, and a determination coefficientR2 is defined

for evaluation as

R2
=

(
n

n∑
i=1
Yi Ŷi −

n∑
i=1
Yi

n∑
i=1
Ŷi

)2

(
n

n∑
i=1
Ŷ 2
i −

(
n∑
i=1
Ŷi

)2
)(

n
n∑
i=1
Y 2
i −

(
n∑
i=1
Yi

)2
) , (20)

where Yi is the true value, Ŷi is the predicted value for the
ith training data and n is the training data number. A larger
determination coefficient means better approximation perfor-
mance. The simulations on hidden-nodes effects were car-
ried out for three-layer and five-layer geoelectric models. The
BP structure is 10-s-5 and 10-s-9, and its transfer, training
and learning functions are the “log sigmoidal”, “Levenberg–
Marquardt” and “gradient descent momentum”, respectively.
The average, minimum and maximum values of R2 were ob-
tained after running 20 times for each simulation. The R2

curves were shown in Fig. 5.
It can be seen that the optimal neural-network structures

were 10-2-5 and 10-5-9 for three- and five-layer models
based on the maximum R2 values. Then, the PSO-BP algo-
rithms with different inertia weight were implemented and
compared for the three-layer model. The BP structure was
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Table 2. Comparison of different inertia weights in PSO algorithms
(ωs = 0.9 and ωe = 0.4).

Inertia Iteration Minimum Average Convergence
weight number fitness fitness time(s)

ω1 9 1.3914× 10−3 1.3982× 10−3 65.21
ω2 29 1.4406× 10−3 1.4418× 10−3 204.97
ω3 25 1.4168× 10−3 1.4224× 10−3 189.17
ωc 6 1.3846× 10−3 1.3925× 10−3 44.34

chosen as 10-2-5, and four types of inertia weight as in
Eqs. (3)–(7) in the PSO were compared in Table 2.

The simulation was implemented on a Core (TM) i5-7500
processor with 8 GB of memory. It is obviously found in Ta-
ble 2 that the COPSO algorithm has a much faster conver-
gence rate and a lower iteration number and is time consum-
ing.

4.3 Layered-model inversion

A three-layer and five-layer geoelectric models were inves-
tigated, and the PSO parameter values are the same as those
of the “Algorithm testing” section in this paper. In order to
simulate actual TEM applications, the ramp turn-off is taken
into account. Considering the probability distribution char-
acteristic of the above algorithms, the average of 20 simula-
tion results was chosen. The BP, SPSO-BP and COPSO-BP
algorithms and a nonlinear programming genetic algorithm
(NPGA) (Li et al., 2017) were compared.

4.3.1 Three-layer H-type model

The central loop TEM parameters were set as follows: the
transmitting coil radius was set to a = 100 m; the ramp emis-
sion current was set to 100 A; and the turn-off time was set
to 1 µs. In the geoelectric model, the resistivity is ρ1 = 100,
ρ2 = 10 and ρ3 = 100�m and the thickness is h1 = 100 and
h2 = 200 m.

The BP training samples, which are a series of Hz(t)
for different geoelectrical parameters, were generated by the
TEM forward model. The resistivity ranges were ρ1 ∈(50,
150), ρ2 ∈(5, 15) and ρ3 ∈(50, 150) and the thickness ranges
were h1 ∈(50, 150) and h2 ∈(100, 300); 1000 random groups
were chosen. The resistivity and thickness distributions of ρ1
and h1 were shown in Fig. 6. The relative error is defined as

Err_rel =

∣∣∣∣∣ T ∗_cal−O
∗

_ref

O∗_ref

∣∣∣∣∣ , (21)

where T ∗_cal and O∗_ref are the calculated and reference values
for the geoelectric models.

The inversion results were shown in Table 3 and Figs. 7–
8. The BP type algorithms were superior to the NPGA in-
version in Table 3. Moreover, the inversion accuracy, conver-

Figure 7. Fitness curves of SPSO-BP and COPSO-BP.

Figure 8. Comparison of mean square error curves.

gence rate and optimization ability of the COPSO-BP algo-
rithm were better than others.

Additional results showed that the solution range of ρ1
and h1 in the 20 simulations for the above algorithms were
ρ1 ∈(97.980, 103.102) and h1 ∈(96.962, 102.480) for BP,
ρ1 ∈(98.954, 101.137) and h1 ∈(96.955, 101.829) for SPSO-
BP, ρ1 ∈(99.382, 100.989) and h1 ∈(97.877, 101.044) for
COPSO-BP, respectively. Therefore, the COPSO-BP can ac-
quire a higher accuracy and is more stable.

4.3.2 Five-layer KHK-type model

A five-layer KHK-type geoelectric model was adopted, and
its resistivities were ρ1 = 100, ρ2 = 300, ρ3 = 50, ρ4 = 200
and ρ5 = 30�m, and its thickness were h1 = 100, h2 = 200,
h3 = 300 and h4 = 500 m.

The training samples with parameter ranges were ρ1 ∈(50,
150), ρ2 ∈(150,450), ρ3 ∈(25, 75), ρ4 ∈(100, 300) and
ρ5 ∈(15, 45) for resistivity and h1 ∈(50, 150), h2 ∈(100,
300), h3 ∈(150, 450) and h4 ∈(250, 750) for thickness. The
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Table 3. Inversion comparison of three-layer H-type geoelectric models.

H type Resistivity ρ (�m) Thickness h (m) Total relative

ρ1 ρ2 ρ3 h1 h2 error (%)

True values 100 10 100 100 200 –
BP relative error (%) −0.275 −0.625 0.765 −0.968 −0.649 3.284
SPSO-BP relative error (%) 0.062 −0.322 −0.737 −0.579 −0.970 2.672
COPSO-BP 100.031 9.991 99.310 100.234 200.886 –
COPSO-BP relative error (%) 0.031 −0.087 −0.689 0.234 0.443 1.487
NPGA relative error (%) 0.133 −0.034 3.450 −7.305 −0.401 11.323

Figure 9. Fitness curves of SPSO-BP and COPSO-BP.

Figure 10. Comparison of mean square error curves.

1000 group training samples were generated within the above
ranges. The inversion results were shown in Table 4 and
Figs. 9–10. It can be seen that the COPSO-BP algorithm has
better global optimization performance.

4.3.3 Inversion comparison

Three kinds of BP methods, the traditional BP, SPSO-BP and
COPSO-BP algorithms, were compared in Table 5. Hence,
the training times of COPSO-BP were obviously less than
those of SPSO-BP and were almost equal to BP; it can obtain
better precision especially for its global optimization perfor-
mance.

The inversion of COPSO-BP and NPGA were compared
in Fig. 11. The fitting ability of COPSO-BP was much better
than NPGA.

4.3.4 Robust performance analysis

In order to verify the algorithm robustness, 5 % (26 dB) and
10 % (20 dB) Gaussian random noise was added in TEM data
for the three-layer geoelectric model. Three kinds of inver-
sions were implemented respectively. The results and a com-
parison were shown in Table 6. The Hz(t) and data with 5 %
noise were shown in Fig. 12.

As can be seen in Table 2, after applying 5 % and 10 %
Gaussian noise, the COPSO-BP inversion has a higher robust
ability. The accuracy was obviously improved based on the
total relative-error data.

4.4 Field example

In order to test the effectiveness of the method, a transient
electromagnetic vertical magnetic field (Hz) with 10 measur-
ing points at 380 to 1280 m of the no. 1 line from a mining
area in Anhui Province were selected. After the data pro-
cessing, the inversion was performed using the three-layer
neural-network model in the previous section, and the re-
sults of the BP and COPSO-BP inversion were compared.
Figure 13 shows the comparison between the surveyed data
and the inversion data at 380 m of the no. 2 line in the min-
ing area. Figure 14 displays the pseudo-sections of the 10
sets of inversion data combined with the geological data in-
terpolation smoothing. It can be seen from Fig. 14 that the
first layer has low resistivity (100–200�m), which is in-
ferred to be the second-layer (T2g22) gray dolomite of the
Middle Triassic old Malague section, with a thickness of
about 200 m. The second layer has the second-highest resis-
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Table 4. Inversion comparison of five-layer KHK-type geoelectric models.

KHK type Resistivity ρ (�m) Thickness h (m) Total relative

ρ1 ρ2 ρ3 ρ4 ρ5 h1 h2 h3 h4 error (%)

True values 100 300 50 200 30 100 200 300 500 –
BP relative error −1.006 −0.862 −1.014 −0.030 1.119 −0.362 −0.298 −0.575 −0.376 5.645
(%)
SPSO-BP relative 0.429 1.040 −0.577 −0.071 −0.883 −0.002 0.657 −0.655 −0.316 4.634
error (%)
COPSO-BP 99.594 299.469 50.082 199.092 29.937 99.501 200.481 301.800 497.670 –
COPSO-BP relative −0.405 −0.176 0.164 −0.453 −0.209 −0.498 0.240 0.600 −0.465 3.214
error (%)
NPGA relative −6.211 −0.008 −0.974 3.930 3.083 −0.691 0.505 −2.900 −3.370 19.062
error (%)

Table 5. Simulation comparison of different algorithms.

Inversion method Three-layer H-type model Five-layer KHK-type model

Training Minimum Test relative Training Minimum Test relative
times training error rate times training error rate

error (%) error (%)

BP 3 0.2882 3.284 5 0.3013 5.645
SPSO-BP 7 0.2832 2.672 15 0.2992 4.634
COPSO-BP 5 0.2725 1.487 6 0.2900 3.214

tivity (300–400�m), which is surmised to be the first-layer
(T2g21) dolomite of the Middle Triassic old Malague sec-
tion, with a thickness of about 400 m. The third layer has
high resistivity (600–800�m), which is speculated to be the
sixth-layer (T2g16) limestone dolomite of the Middle Trias-
sic old group. The results are basically consistent with the
geological conditions of the mining area, indicating the fea-
sibility and effectiveness of the neural-network method. And
the results of COPSO-BP inversion are better than those of
the BP, for which the inversion position is more accurate,
the shape and spacing are clearer, and the resistivity of each
layer is more consistent with the those of the actual geologi-
cal model.

5 Discussion

The inversion is performed for three-layer (H-type) and five-
layer (KHK-type) geoelectric models in this paper. The re-
sults show that the BP neural network is better than the
NPGA algorithm because the BP method does not need
to use the forward algorithm repeatedly, and its calculation
time is short, which is different from the nonlinear heuristic
method based on a global space search solution.

The main advantage of the BP is that it can interpret
the transient electromagnetic sounding results quickly after
training the network. Furthermore, the BP algorithm could
automatically obtain the “reasonable rules” between input

and output data by learning, and it can adaptively store the
learning content in the network weight, for which the BP
neural network has a high self-learning and self-adaptation
ability. In addition, the superior simulation results of the
test function indicate that the BP algorithm can approximate
any nonlinear continuous function with arbitrary precision,
which means it has a strong nonlinear mapping ability; the
inversion results of the layered geoelectric model with un-
correlated noise data prove that the BP algorithm has strong
robustness, which means it has the ability to apply learning
results to new knowledge. However, the BP neural-network
weight is gradually adjusted by the direction of local im-
provement, which causes the algorithm to fall into a local
extremum, and the weight converges to a local minimum that
leads to the network training failure. Moreover, the BP is very
sensitive to the initial network weight, and the initialization
network with different weight values tends to converge at dif-
ferent local minimums, so it obtains different results each
time. In addition, the BP algorithm is essentially a gradient
descent method, which leads to a slow convergence rate.

From the results of the layered-model and parametric anal-
ysis part, it can be seen that the single BP algorithm has a
higher error value than SPSO-BP because the BP method is
sensitive to initial weight and easy to fall into local mini-
mum values; thus a heuristic global search particle swarm
optimization algorithm with a simple structure, rapid conver-
gence and high precision is applied to optimize the weight
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Figure 11. Inversion comparison of different geoelectric models.

Table 6. Comparison of inversion results of three-layer H-type (with noise) models.

Model parameters Resistivity ρ (�m) Thickness h (m) Total relative error (%)

ρ1 ρ2 ρ3 h1 h2

True value 100 10 100 100 200 –
Without noise BP 99.724 9.937 100.765 99.031 198.701 3.284

COPSO-BP 100.031 9.991 99.310 100.234 200.886 1.487

5 % noise BP 101.374 9.966 98.283 101.255 199.282 5.039
COPSO-BP 100.252 9.977 98.222 101.206 199.228 3.847

10 % noise BP 90.525 9.931 99.481 101.748 203.105 13.976
COPSO-BP 104.472 9.96050 101.345 100.570 199.437 7.064

Figure 12. Forward data of Hz and data with 5 % noise.

and threshold of the BP neural network, which improves the
global optimization performance of the algorithm. Further-
more, the PSO algorithm adjusts the inertia weight adap-
tively based on the chaotic-oscillation curve that is similar
to the annealing process in the simulated annealing algo-
rithm (SA), which jumps out the local extremum faster in
the early stage and accelerates the convergence and reduces
the training times. Therefore, compared with the SPSO-BP

and BP algorithms, the inversion results of COPSO-BP are
closer to the theoretical data with smaller error fluctuations,
stronger anti-noise controls, a better generalization of per-
formance and higher stability, which it is effective in solving
geophysical inverse problems.

From the simulation experiment, it is not clear how the
weight organization affects the BP neural-network weight
learning process. It is necessary to conduct a more system-
atic study on this problem to improve our understanding of
how the BP neural network handles training data.

6 Conclusions

The nonlinear COPSO-BP method was proposed for TEM
inversion. The BP’s initial weight and threshold parameters
were trained by the COPSO algorithm, which makes it easy
to not fall into a local optimum. The chaotic-oscillation iner-
tia weight for PSO was proposed so as to improve the PSO’s
global optimization ability and fast convergence in the early
stage. The layered geoelectric model inversion showed that
the COPSO-BP method is more accurate and stable and re-
quires relatively less training time.
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Figure 13. 1-D inversion of forward results for (a) BP and (b) COPSO-BP.

Figure 14. Inversion results for BP (a) and COPSO-BP (b).
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