Articles | Volume 26, issue 4
https://doi.org/10.5194/npg-26-401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-26-401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
University of Victoria, School of Earth and Ocean Sciences, P.O. Box 3065 STN CSC, Victoria, BC V8P 5C2, Canada
Amber M. Holdsworth
Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 W. Saanich Rd., P.O. Box 6000, Sidney, BC V8L 4B2, Canada
Adam H. Monahan
University of Victoria, School of Earth and Ocean Sciences, P.O. Box 3065 STN CSC, Victoria, BC V8P 5C2, Canada
Related authors
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1796, https://doi.org/10.5194/egusphere-2024-1796, 2024
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019, https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
Short summary
ll-posedness of the inverse problem and sparse noisy data are two major challenges in the modeling of high-dimensional spatiotemporal processes. We present a Bayesian inference method with a strongly regularized posterior to overcome these challenges, enabling joint state-parameter estimation and quantifying uncertainty in the estimation. We demonstrate the method on a physically motivated nonlinear stochastic partial differential equation arising from paleoclimate construction.
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019, https://doi.org/10.5194/gmd-12-1965-2019, 2019
Short summary
Short summary
Ice algae, the primary producer in sea ice, play a fundamental role in shaping marine ecosystems and biogeochemical cycling of key elements in polar regions. In this study, we developed a process-based numerical model component representing sea-ice biogeochemistry for a sea ice–ocean coupled general circulation model. The model developed can be used to simulate the projected changes in sea-ice ecosystems and biogeochemistry in response to on-going rapid decline of the Arctic.
Gerald M. Lohmann and Adam H. Monahan
Atmos. Meas. Tech., 11, 3131–3144, https://doi.org/10.5194/amt-11-3131-2018, https://doi.org/10.5194/amt-11-3131-2018, 2018
Short summary
Short summary
Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability.
Adam H. Monahan
Nonlin. Processes Geophys., 25, 335–353, https://doi.org/10.5194/npg-25-335-2018, https://doi.org/10.5194/npg-25-335-2018, 2018
Short summary
Short summary
Bivariate probability density functions (pdfs) of wind speed characterize the relationship between speeds at two different locations or times. This study develops such pdfs of wind speed from distributions of the components, following a well-established approach for univariate distributions. The ability of these models to characterize example observed datasets is assessed. The mathematical complexity of these models suggests further extensions of this line of reasoning may not be practical.
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017, https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Short summary
In remote regions, cloud conditions may be strongly influenced by oceanic source of dimethylsulfide (DMS) produced by plankton and bacteria. In the Arctic, sea ice provides an additional source of these aerosols. The results of this study highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that would be better constrained by new observations.
Jan-Erik Tesdal, James R. Christian, Adam H. Monahan, and Knut von Salzen
Atmos. Chem. Phys., 16, 10847–10864, https://doi.org/10.5194/acp-16-10847-2016, https://doi.org/10.5194/acp-16-10847-2016, 2016
Short summary
Short summary
A global atmosphere model with explicit representation of aerosol processes is used to assess uncertainties in the climate impact of ocean DMS efflux and the role of spatial and temporal variability of the DMS flux in the effect on climate. The radiative effect of sulfate is nearly linearly related to global total DMS flux. Removing the spatial or temporal variability of DMS flux changes the global radiation budget, but the effect is of second-order importance relative to the global mean flux.
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016, https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary
Short summary
Increasing numbers of photovoltaic (PV) power systems call for the characterization of irradiance variability with very high spatiotemporal resolution. We use 1 Hz irradiance data recorded by as many as 99 pyranometers and show mixed sky conditions to differ substantially from clear and overcast skies. For example, the probabilities of strong fluctuations and their respective spatial autocorrelation structures are appreciably distinct under mixed conditions.
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Simulation-based comparison of multivariate ensemble post-processing methods
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Short summary
The complexity of geophysics systems results in time series with fluctuations at all timescales. The analysis of their variability then consists in decomposing them into a set of basis signals. We developed here a new adaptive filtering method called empirical adaptive wavelet decomposition that optimizes the empirical-mode decomposition existing technique, overcoming its drawbacks using the rigour of wavelets as defined in the recently published empirical wavelet transform method.
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022, https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary
Short summary
In most of the investigations on metastable systems, the stochastic forcing is modulated by Gaussian noise. Lévy noise laws, which describe jump processes, have recently received a lot of attention, but much less is known. We study stochastic versions of the Ghil–Sellers energy balance model, and we highlight the fundamental difference between how transitions are performed between the competing warm and snowball states, depending on whether Gaussian or Lévy noise acts as forcing.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020, https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary
Short summary
Accurate models of spatial, temporal, and inter-variable dependencies are of crucial importance for many practical applications. We review and compare several methods for multivariate ensemble post-processing, where such dependencies are imposed via copula functions. Our investigations utilize simulation studies that mimic challenges occurring in practical applications and allow ready interpretation of the effects of different misspecifications of the numerical weather prediction ensemble.
Cited articles
Abraham, C. and Monahan, A. H.: Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers, Part I: State Variables Containing Information about Regime Occupation, J. Atmos. Sci., 76, 3455–3484, https://doi.org/10.1175/JAS-D-18-0261.1, 2019a. a
Abraham, C. and Monahan, A. H.: Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers. Part II: Regime Occupation and Transition Statistics and the Influence of External Drivers, J. Atmos. Sci., 76, 3485–3504, https://doi.org/10.1175/JAS-D-19-0078.1, 2019b. a
Abraham, C. and Monahan, A. H.: Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers, Part III: The Structure of Meteorological State Variables in Persistent Regime Nights and across Regime Transitions, J. Atmos. Sci., 76, 3505–3527, https://doi.org/10.1175/JAS-D-18-0274.1, 2019c. a
Abraham, C., Holdsworth, A. M., and Monahan, A. H.: Replication Data for: A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer, https://doi.org/10.5683/SP2/ZUENCK, Scholars Portal Dataverse, 2019.
Acevedo, O. C. and Fitzjarrald, D. R.: In the Core of the Night-Effects of
Intermittent Mixing on a Horizontally Heterogeneous Surface, Bound-Lay.
Meteorol., 106, 1–33, https://doi.org/10.1023/A:1020824109575, 2003. a
Acevedo, O. C., Moraes, O. L. L., Degrazia, G. A., and Medeiros, L. E.:
Intermittency and the Exchange of Scalars in the Nocturnal Surface Layer,
Bound.-Lay. Meteorol., 119, 41–55, https://doi.org/10.1007/s10546-005-9019-3, 2006. a
Acevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., and
Degrazia, G. A.: Contrasting structures between the decoupled and coupled
states of the stable boundary layer, Q. J. Roy. Meteorol. Soc., 142, 693–702,
https://doi.org/10.1002/qj.2693, 2016. a
Acevedo, O. C., Maroneze, R., Costa, F. D., Puhales, F. S., Nogueira Martins,
L. G., Soares de Oliveira, P. E., and Mortarini, L.: The Nocturnal
Boundary Layer Transition from Weakly to Very Stable, Part 1: Observations,
Q. J. Roy. Meteorol. Soc., https://doi.org/10.1002/qj.3642, 2019. a
Ansorge, C. and Mellado, J. P.: Global Intermittency and Collapsing Turbulence
in the Stratified Planetary Boundary Layer, Bound.-Lay. Meteorol., 153,
89–116, https://doi.org/10.1007/s10546-014-9941-3, 2014. a, b
Baas, P., Bosveld, F. C., Baltink, H. K., and Holtslag, A. A. M.: A
Climatology of Nocturnal Low-Level Jets at Cabauw, J. Appl. Meteorol.
Climatol., 48, 1627–1642, https://doi.org/10.1175/2009JAMC1965.1, 2009. a
Banta, R. M., Mahrt, L., Vickers, D., Sun, J., Balsley, B. B., Pichugina,
Y. L., and Williams, E. J.: The Very Stable Boundary Layer on Nights with
Weak Low-Level Jets, J. Atmos. Sci., 64, 3068–3090,
https://doi.org/10.1175/JAS4002.1, 2007. a, b
Barthlott, C., Kalthoff, N., and Fiedler, F.: Influence of high-frequency
radiation on turbulence measurements on a 200 m tower, Meteorol. Z, 12,
67–71, https://doi.org/10.1127/0941-2948/2003/0012-0067, 2003. a
Basu, S., Porté-agel, F., Foufoula-Georgiou, E., Vinuesa, J.-F., and
Pahlow, M.: Revisiting the Local Scaling Hypothesis in Stably Stratified
Atmospheric Boundary-Layer Turbulence: an Integration of Field and Laboratory
Measurements with Large-Eddy Simulations, Bound.-Lay. Meteorol., 119,
473–500, https://doi.org/10.1007/s10546-005-9036-2, 2006. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteorol. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289,
2008. a
Beeken, A., Neumann, T., and Westerhellweg, A.: Five Years of Operation of the
First Offshore Wind Research Platform in the German Bight – FINO1, Tech.
rep., German Wind Energy Institute (DEWI GmbH), DEWEK, DEWI GmbH,
Ebertstraße 96, 26382 Wilhelmshaven, available at:
http://www.dewi.de/dewi/fileadmin/pdf/publications/Publikations/5_Beeken.pdf (last access: 12 November 2019),
2008. a
Blackadar, A.: Modeling the nocturnal boundary layer, in: Proceedings of the
Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality,
46–49, American Meteorological Society, Boston, Mass., 1976. a
Blackadar, A.: High resolution models of the planetary boundary layer, Adv.
Environ. Sci. Eng., 1, 50–85, 1979. a
Blackadar, A. K.: The vertical distribution of wind and turbulent exchange in a
neutral atmosphere, J. Geophys. Res., 67, 3095–3102,
https://doi.org/10.1029/JZ067i008p03095, 1962. a
Blumen, W.: An observational study of instability and turbulence in nighttime
drainage winds, Bound.-Lay. Meteorol., 28, 245–269,
https://doi.org/10.1007/BF00121307, 1984. a
Blumen, W., Banta, R., Burns, S. P., Fritts, D. C., Newsom, R., Poulos, G. S.,
and Sun, J.: Turbulence statistics of a Kelvin–Helmholtz billow event
observed in the night-time boundary layer during the Cooperative
Atmosphere–Surface Exchange Study field program, Dyn. Atmos. Oceans, 34,
189–204, https://doi.org/10.1016/S0377-0265(01)00067-7, 2001. a
Bosveld, F. C., Baas, P., Steeneveld, G.-J., Holtslag, A. A. M., Angevine,
W. M., Bazile, E., de Bruijn, E. I. F., Deacu, D., Edwards, J. M., Ek, M.,
Larson, V. E., Pleim, J. E., Raschendorfer, M., and Svensson, G.: The Third
GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models.
Part B: Results and Process Understanding, Bound.-Lay. Meteorol., 152,
157–187, https://doi.org/10.1007/s10546-014-9919-1, 2014. a, b
Bowen, B. M., Baars, J. A., and Stone, G. L.: Nocturnal Wind Direction Shear
and Its Potential Impact on Pollutant Transport, J. Appl. Meteorol. Climatol.,
39, 437–445, https://doi.org/10.1175/1520-0450(2000)039<0437:NWDSAI>2.0.CO;2, 2000. a
Brümmer, B., Lange, I., and Konow, H.: Atmospheric boundary layer
measurements at the 280 m high Hamburg weather mast 1995–2011: mean annual
and diurnal cycles, Meteorol. Z., 21, 319–335,
https://doi.org/10.1127/0941-2948/2012/0338, 2012. a
Businger, J.: A note on the Businger-Dyer profiles, Bound.-Lay. Meteorol.,
42, 145–151, https://doi.org/10.1007/BF00119880, 1988. a
Coulter, R. L. and Doran, J. C.: Spatial and Temporal Occurrences of
Intermittent Turbulence During CASES-99, Bound.-Lay. Meteorol., 105,
329–349, https://doi.org/10.1023/A:1019993703820, 2002. a
Deardorff, J. W.: Efficient prediction of ground surface temperature and
moisture, with inclusion of a layer of vegetation, J. Geophys.
Res.-Oceans, 83, 1889–1903, https://doi.org/10.1029/JC083iC04p01889, 1978. a
Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likelihood from
Incomplete Data via the EM Algorithm, J. Roy. Stat. Soc., 39B, 1–38, 1979. a
Derbyshire, S. H.: Boundary-Layer Decoupling over Cold Surfaces as a Physical
Boundary-Instability, Bound.-Lay. Meteorol., 90, 297–325,
https://doi.org/10.1023/A:1001710014316, 1999. a
Dethloff, K., Abegg, C., Rinke, A., Hebestadt, I., and Romanov, V. F.:
Sensitivity of Arctic climate simulations to different boundary-layer
parameterizations in a regional climate model, Tellus A, 53, 1–26,
https://doi.org/10.1034/j.1600-0870.2001.01073.x, 2001. a
Donda, J. M. M., van Hooijdonk, I. G. S., Moene, A. F., Jonker, H. J. J., van
Heijst, G. J. F., Clercx, H. J. H., and van de Wiel, B. J. H.: Collapse of
turbulence in stably stratified channel flow: a transient phenomenon, Q. J.
Roy. Meteorol. Soc., 141, 2137–2147, https://doi.org/10.1002/qj.2511, 2015. a
Doran, J. C.: Characteristics of Intermittent Turbulent Temperature Fluxes in
Stable Conditions, Bound.-Lay. Meteorol., 112, 241–255,
https://doi.org/10.1023/B:BOUN.0000027907.06649.d0, 2004. a, b
Dörenkämper, M., Witha, B., Steinfeld, G., Heinemann, D., and Kühn,
M.: The impact of stable atmospheric boundary layers on wind-turbine wakes
within offshore wind farms, J. Wind Eng. Ind.
Aerodynam., 144, 146–153, https://doi.org/10.1016/j.jweia.2014.12.011, 2015. a, b
Edwards, J. M., McGregor, J. R., Bush, M. R., and Bornemann, F. J. A.:
Assessment of numerical weather forecasts against observations from
Cardington: seasonal diurnal cycles of screen-level and surface temperatures
and surface fluxes, Q. J. Roy. Meteorol. Soc., 137, 656–672,
https://doi.org/10.1002/qj.742, 2011. a
Fischer, J.-G., Senet, C., Outzen, O., Schneehorst, A., and Herklotz, K.:
Regional oceanographic distincions in the South-Eastern part of the North
Sea: Results of two years of monitoring at the research platforms FINO1 and
FINO3, in: German Wind Energy Conference DEWEK 2012, edited by: J.-G. Fischer,
Bremen, Germany, 2012. a, b
Floors, R., Peña, A., and Gryning, S.-E.: The effect of baroclinicity on
the wind in the planetary boundary layer, Q. J. Roy. Meteorol. Soc., 141,
619–630, https://doi.org/10.1002/qj.2386, 2014. a
Flores, O. and Riley, J. J.: Analysis of Turbulence Collapse in the Stably
Stratified Surface Layer Using Direct Numerical Simulation, Bound.-Lay.
Meteorol., 139, 241–259, https://doi.org/10.1007/s10546-011-9588-2, 2011. a
Franzke, C., Horenko, I., Majda, A. J., and Klein, R.: Systematic Metastable
Atmospheric Regime Identification in an AGCM, J. Atmos.
Sci., 66, 1997–2012, https://doi.org/10.1175/2009JAS2939.1, 2009. a
Fu, G., Charles, S. P., and Kirshner, S.: Daily rainfall projections from
general circulation models with a downscaling nonhomogeneous hidden Markov
model (NHMM) for south-eastern Australia, Hydrol. Process., 27,
3663–3673, https://doi.org/10.1002/hyp.9483,
2013. a
Genthon, C., Town, M. S., Six, D., Favier, V., Argentini, S., and Pellegrini,
A.: Meteorological atmospheric boundary layer measurements and ECMWF
analyses during summer at Dome C, Antarctica, J. Geophys. Res.-Atmos., 115, D5,
https://doi.org/10.1029/2009JD012741, 2010. a
Genthon, C., Six, D., Gallée, H., Grigioni, P., and Pellegrini, A.: Two
years of atmospheric boundary layer observations on a 45 m tower at Dome C on
the Antarctic plateau, J. Geophys. Res.-Atmos., 118, 3218–3232,
https://doi.org/10.1002/jgrd.50128, 2013. a
Gerbig, C., Körner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error characterization and propagation, Atmos. Chem. Phys., 8, 591–602, https://doi.org/10.5194/acp-8-591-2008, 2008. a
Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., and Guest,
P. S.: Stable Boundary-Layer Scaling Regimes: The SHEBA Data, Bound.-Lay.
Meteorol., 116, 201–235, https://doi.org/10.1007/s10546-004-2729-0, 2005. a
Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P.
O. G.: The Critical Richardson Number and Limits of Applicability of Local
Similarity Theory in the Stable Boundary Layer, Bound.-Lay. Meteorol., 147,
51–82, https://doi.org/10.1007/s10546-012-9771-0, 2013. a
Gryning, S.-E., Floors, R., Peña, A., Batchvarova, E., and Brümmer,
B.: Weibull Wind-Speed Distribution Parameters Derived from a Combination of
Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites,
Bound.-Lay. Meteorol., 159, 329–348, https://doi.org/10.1007/s10546-015-0113-x, 2016. a
He, Y., Monahan, A. H., Jones, C. G., Dai, A., Biner, S., Caya, D., and Winger,
K.: Probability distributions of land surface wind speeds over North
America, J. Geophys. Res.-Atmos., 115, D04103, https://doi.org/10.1029/2008JD010708,
2010. a
He, Y., McFarlane, N. A., and Monahan, A. H.: A New TKE-Based Parameterization
of Atmospheric Turbulence in the Canadian Global and Regional Climate
Models, J. Adv. Model. Earth Sy., 11, 1153–1188,
https://doi.org/10.1029/2018MS001532, 2019. a
Holdsworth, A. M., Rees, T., and Monahan, A. H.: Parameterization Sensitivity
and Instability Characteristics of the Maximum Sustainable Heat Flux
Framework for Predicting Turbulent Collapse, J. Atmos. Sci., 73, 3527–3540,
https://doi.org/10.1175/JAS-D-16-0057.1, 2016. a
Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A.
C. M., Bosveld, F. C., Cuxart, J., Lindvall, J., Steeneveld, G. J.,
Tjernström, M., and Wiel, B. J. H. V. D.: Stable Atmospheric Boundary
Layers and Diurnal Cycles: Challenges for Weather and Climate Models, B.
Am. Meteor. Soc., 94, 1691–1706, https://doi.org/10.1175/BAMS-D-11-00187.1, 2013. a, b, c, d
Horenko, I.: On the Identification of Nonstationary Factor Models and Their
Application to Atmospheric Data Analysis, J. Atmos.
Sci., 67, 1559–1574, https://doi.org/10.1175/2010JAS3271.1, 2010. a
Hughes, J. P., Guttorp, P., and Charles, S. P.: A non-homogeneous hidden Markov
model for precipitation occurrence, J. Roy. Stat. Soc.
C, 48, 15–30, https://doi.org/10.1111/1467-9876.00136,
1999. a
Kaimal, J. C. and Gaynor, J. E.: The Boulder Atmospheric Observatory, J.
Appl. Meteorol. Climatol., 22, 863–880,
https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2, 1983. a
Kalthoff, N. and Vogel, B.: Counter-current and channelling effect under
stable stratification in the area of Karlsruhe, Theor. Appl. Climatol., 45,
113–126, https://doi.org/10.1007/BF00866400, 1992. a
Kyselý, J. and Plavcová, E.: Biases in the diurnal temperature range
in Central Europe in an ensemble of regional climate models and their
possible causes, Clim. Dynam., 39, 1275–1286,
https://doi.org/10.1007/s00382-011-1200-4, 2012. a
Lang, F., Belušić, D., and Siems, S.: Observations of
Wind-Direction Variability in the Nocturnal Boundary Layer, Bound.-Lay.
Meteorol., 166, 51–68, https://doi.org/10.1007/s10546-017-0296-4, 2018. a
Mahrt, L.: Nocturnal Boundary-Layer Regimes, Bound.-Lay. Meteorol., 88,
255–278, https://doi.org/10.1023/A:1001171313493, 1998a. a, b
Mahrt, L.: Stratified atmospheric boundary layers and breakdown of models,
Theor. Comput. Fluid Phys., 11, 263–279, https://doi.org/10.1007/s001620050093,
1998b. a, b
Mahrt, L.: Common microfronts and other solitary events in the nocturnal
boundary layer, Q. J. Roy. Meteorol. Soc., 136, 1712–1722,
https://doi.org/10.1002/qj.694, 2010. a
Mahrt, L.: The Near-Calm Stable Boundary Layer, Bound.-Lay. Meteorol., 140,
343–360, https://doi.org/10.1007/s10546-011-9616-2, 2011. a
Maroneze, R., Acevedo, O. C., Puhales, F. S., Demarco, G., and Mortarini, L.:
The Nocturnal Boundary Layer Transition from Weakly to Very Stable, Part 2:
Numerical Simulation with a Second Order Model, Q. J. Roy. Meteorol. Soc.,
https://doi.org/10.1002/qj.3643, 2019. a, b
Mauritsen, T. and Svensson, G.: Observations of Stably Stratified Shear-Driven
Atmospheric Turbulence at Low and High Richardson Numbers, J. Atmos. Sci.,
64, 645–655, https://doi.org/10.1175/JAS3856.1, 2007. a
Medeiros, B., Deser, C., Tomas, R. A., and Kay, J. E.: Arctic inversion
strength in climate models, J. Climate, 24, 4733–4740,
https://doi.org/10.1175/2011JCLI3968.1, 2011. a
Moene, A. F., Van de Wiel, B. J. H., and Jonker, H. J. J.: Local similarity
profiles from direct numerical simulation, in: Preprints, 19th Symp. on
Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc. A, vol. 3,
2010. a
Monahan, A. H., He, Y., McFarlane, N., and Dai, A.: The Probability
Distribution of Land Surface Wind Speeds, J. Climate, 24, 3892–3909,
https://doi.org/10.1175/2011JCLI4106.1, 2011. a
Monahan, A. H., Rees, T., He, Y., and McFarlane, N.: Multiple Regimes of Wind,
Stratification, and Turbulence in the Stable Boundary Layer, J. Atmos. Sci.,
72, 3178–3198, https://doi.org/10.1175/JAS-D-14-0311.1, 2015. a, b, c
Monin, A. and Obukhov, A.: Basic laws of turbulent mixing in the surface layer
of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187,
1954. a
Nappo, C., Sun, J., Mahrt, L., and Belušić, D.: Determining Wave–Turbulence
Interactions in the Stable Boundary Layer, B. Am. Meteor. Soc., 95,
ES11–ES13, https://doi.org/10.1175/BAMS-D-12-00235.1, 2014. a
Nappo, C. J.: Sporadic breakdowns of stability in the PBL over simple and
complex terrain, Bound.-Lay. Meteorol., 54, 69–87,
https://doi.org/10.1007/BF00119413, 1991. a
Newsom, R. K. and Banta, R. M.: Shear-Flow Instability in the Stable Nocturnal
Boundary Layer as Observed by Doppler Lidar during CASES-99, J. Atmos. Sci.,
60, 16–33, https://doi.org/10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2, 2003. a
O'Brien, T. A., Collins, D. W., Rauscher, A. S., and Ringler, T. D.: Reducing the
computational cost of the ECF using a nuFFT: A fast and objective probability
density estimation method, Comput. Stat. Data Anal., 79, 222–234,
https://doi.org/10.1016/j.csda.2014.06.002, 2014. a
O'Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, D. W., and O'Brien,
J. P.: A fast and objective multidimensional kernel density estimation
method: fastKDE, Comput. Stat. Data Anal., 101, 148–160,
https://doi.org/10.1016/j.csda.2016.02.014, 2016. a
O'Kane, T. J., Risbey, J. S., Franzke, C., Horenko, I., and Monselesan, D. P.:
Changes in the Metastability of the Midlatitude Southern Hemisphere
Circulation and the Utility of Nonstationary Cluster Analysis and Split-Flow
Blocking Indices as Diagnostic Tools, J. Atmos. Sci.,
70, 824–842, https://doi.org/10.1175/JAS-D-12-028.1, 2013. a
Optis, M., Monahan, A., and Bosveld, F. C.: Limitations and breakdown of
Monin–Obukhov similarity theory for wind profile extrapolation under stable
stratification, Wind Energy, 19, 1053–1072, https://doi.org/10.1002/we.1883, 2015. a
Pahlow, M., Parlange, M. B., and Porté-Agel, F.: On Monin–Obukhov
Similarity In The Stable Atmospheric Boundary Layer, Bound.-Lay. Meteorol.,
99, 225–248, https://doi.org/10.1023/A:1018909000098, 2001. a
Prabha, T., Hoogenboom, G., and Smirnova, T.: Role of land surface
parameterizations on modeling cold-pooling events and low-level jets, Atmos.
Res., 99, 147–161, https://doi.org/10.1016/j.atmosres.2010.09.017, 2011. a
Rabiner, L. R.: A tutorial on hidden Markov models and selected applications
in speech recognition, Proc. IEEEE, 77, 257–286, https://doi.org/10.1109/5.18626,
1989. a, b
Rees, J. M. and Mobbs, S. D.: Studies of internal gravity waves at Halley
Base, Antarctica, using wind observations, Q. J. Roy. Meteorol. Soc., 114,
939–966, https://doi.org/10.1002/qj.49711448206, 1988. a
Rishel, J., Johnson, S., and Holt, D.: Meteorological monitoring at Los
Alamos. Los Alamos National Progress Report LA-UR-03-9097, Tech. rep., Los
Alamos National Laboratory, available at:
https://envweb.lanl.gov/weathermachine/downloads/LA-UR-03-8097_webcopy.pdf (last access: 12 November 2019), 2003. a
Salmond, J. A. and McKendry, I. G.: A review of turbulence in the very stable
nocturnal boundary layer and its implications for air quality, Prog.
Phys. Geogr., 29, 171–188, https://doi.org/10.1191/0309133305pp442ra, 2005. a
Sorbjan, Z.: On similarity in the atmospheric boundary layer, Bound.-Lay.
Meteorol., 34, 377–397, https://doi.org/10.1007/BF00120989, 1986. a
Staley, D. and Jurica, G.: Effective atmospheric emissivity under clear skies,
J. Appl. Meteorol., 11, 349–356,
https://doi.org/10.1175/1520-0450(1972)011<0349:EAEUCS>2.0.CO;2, 1972. a
Sterk, H. A. M., Steeneveld, G. J., and Holtslag, A. A. M.: The role of
snow-surface coupling, radiation, and turbulent mixing in modeling a stable
boundary layer over Arctic sea ice, J. Geophys. Res.-Atmos., 118,
1199–1217, https://doi.org/10.1002/jgrd.50158, 2013. a
Sterk, H. A. M., Steeneveld, G. J., Vihma, T., Anderson, P. S., Bosveld, F. C.,
and Holtslag, A. A. M.: Clear-sky stable boundary layers with low winds over
snow-covered surfaces, Part 1: WRF model evaluation, Q. J. Roy. Meteorol. Soc.,
141, 2165–2184, https://doi.org/10.1002/qj.2513, 2015. a
Storm, B. and Basu, S.: The WRF Model Forecast-Derived Low-Level Wind Shear
Climatology over the United States Great Plains, Energies, 3, 258–276,
https://doi.org/10.3390/en3020258, 2010. a
Sun, J., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, R.,
Frasier, S., Ince, T., Nappo, C., Cuxart, J., Blumen, W., Lee, X., and Hu,
X.-Z.: Intermittent Turbulence Associated with a Density Current Passage in
the Stable Boundary Layer, Bound.-Lay. Meteorol., 105, 199–219,
https://doi.org/10.1023/A:1019969131774, 2002. a
Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter,
R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L.,
Miller, D., and Skelly, B.: Atmospheric Disturbances that Generate
Intermittent Turbulence in Nocturnal Boundary Layers, Bound.-Lay.
Meteorol., 110, 255–279, https://doi.org/10.1023/A:1026097926169, 2004. a
Sun, J., Mahrt, L., Banta, R. M., and Pichugina, Y. L.: Turbulence Regimes and
Turbulence Intermittency in the Stable Boundary Layer during CASES-99, J.
Atmos. Sci., 69, 338–351, https://doi.org/10.1175/JAS-D-11-082.1, 2012. a, b
Sun, J., Mahrt, L., Nappo, C., and Lenschow, D. H.: Wind and Temperature
Oscillations Generated by Wave–Turbulence Interactions in the Stably
Stratified Boundary Layer, J. Atmos. Sci., 72, 1484–1503,
https://doi.org/10.1175/JAS-D-14-0129.1, 2015. a
Svensson, G. and Holtslag, A. A. M.: Analysis of model results for the turning
of the wind and related momentum fluxes in the stable boundary layer,
Bound.-Lay. Meteorol., 132, 261–277, https://doi.org/10.1007/s10546-009-9395-1, 2009. a
Tastula, E.-M., Vihma, T., and Andreas, E. L.: Evaluation of Polar WRF from
modeling the atmospheric boundary layer over antarctic sea ice in autumn and
winter, Mon. Weather Rev., 140, 3919–3935, https://doi.org/10.1175/MWR-D-12-00016.1,
2012. a
Tomas, J. M., Pourquie, M. J. B. M., and Jonker, H. J. J.: Stable
Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers
Entering a Generic Urban Environment, Bound.-Lay. Meteorol., 159, 159–221,
https://doi.org/10.1007/s10546-015-0124-7, 2016. a
Ulden, A. P. V. and Wieringa, J.: Atmospheric boundary layer research at
Cabauw, Bound.-Lay. Meteorol., 78, 39–69, https://doi.org/10.1007/BF00122486, 1996. a
van de Wiel, B. J. H., Moene, A. F., Steeneveld, G. J., Hartogensis, O. K., and
Holtslag, A. A. M.: Predicting the Collapse of Turbulence in Stably
Stratified Boundary Layers, Flow Turbul. Combust., 79, 251–274,
https://doi.org/10.1007/s10494-007-9094-2, 2007. a
van de Wiel, B. J. H., Moene, A. F., and Jonker, H. J. J.: The Cessation of
Continuous Turbulence as Precursor of the Very Stable Nocturnal Boundary
Layer, J. Atmos. Sci., 69, 3097–3127, https://doi.org/10.1175/JAS-D-12-064.1, 2012. a
van de Wiel, B. J. H., Vignon, E., Baas, P., van Hooijdonk, I. G. S., van der
Linden, S. J. A., van Hooft, J. A., Bosveld, F. C., de Roode, S. R., Moene,
A. F., and Genthonc, C.: Regime Transitions in Near-Surface Temperature
Inversions: A Conceptual Model, J. Atmos. Sci., 74, 1057–1073,
https://doi.org/10.1175/JAS-D-16-0180.1, 2017. a, b, c, d
Van Driest, E. R.: On turbulent flow near a wall, J. Aeronaut.
Sci., 18, 145–160, 1951. a
van Hooijdonk, I., Moene, A., Scheffer, M., Clercx, H., and van de Wiel, B.:
Early Warning Signals for Regime Transition in the Stable Boundary Layer: A
Model Study, Bound.-Lay. Meteorol., 162, 283–306,
https://doi.org/10.1007/s10546-016-0199-9, 2017. a, b, c
van Hooijdonk, I. G. S., Donda, J. M. M., Bosveld, H. J. H. C. F. C., and
van de Wiel, B. J. H.: Shear Capacity as Prognostic for Nocturnal Boundary
Layer Regimes, J. Atmos. Sci., 72, 1518–1532,
https://doi.org/10.1175/JAS-D-14-0140.1, 2015. a
Vercauteren, N. and Klein, R.: A Clustering Method to Characterize
Intermittent Bursts of Turbulence and Interaction with Submesomotions in the
Stable Boundary Layer, J. Atmos. Sci., 72, 1504–1517,
https://doi.org/10.1175/JAS-D-14-0115.1, 2015. a, b, c, d
Vignon, E., Genthon, C., Barral, H., Amory, C., Picard, G., Gallée, H.,
Casasanta, G., and Argentini, S.: Momentum- and Heat-Flux Parametrization at
Dome C, Antarctica: A Sensitivity Study, Bound.-Lay. Meteorol., 162,
341–367, https://doi.org/10.1007/s10546-016-0192-3, 2017a.
a
Vignon, E., van de Wiel, B. J. H., van Hooijdonk, I. G. S., Genthon, C.,
van der Linden, S. J. A., van Hooft, J. A., Baas, P., Maurel, W.,
Traullé, O., and Casasanta, G.: Stable boundary-layer regimes at Dome C,
Antarctica: observation and analysis, Q. J. Roy. Meteorol. Soc., 143,
1241–1253, https://doi.org/10.1002/qj.2998, 2017b. a, b
Walsh, J. E., Chapman, W. L., Romanovsky, V., Christensen, J. H., and Stendel,
M.: Global Climate Model Performance over Alaska and Greenland, J. Climate,
21, 6156–6174, https://doi.org/10.1175/2008JCLI2163.1, 2008. a
Walters, J. T., McNider, R. T., Shi, X., Norris, W. B., and Christy, J. R.:
Positive surface temperature feedback in the stable nocturnal boundary layer,
Geophys. Res. Lett., 34, L12709, https://doi.org/10.1029/2007GL029505, 2007. a
Wenzel, A., Kalthoff, N., and Horlacher, V.: On the profiles of wind velocity
in the roughness sublayer above a coniferous forest, Bound.-Lay. Meteorol.,
84, 219–230, https://doi.org/10.1023/A:1000444911103, 1997. a
Westerhellweg, A. and Neumann, T.: FINO1 Mast Correction, DEWI Magazin, 40,
60–66, 2012. a
Williams, A. G., Chambers, S., and Griffiths, A.: Bulk Mixing and Decoupling
of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous
Natural Tracer, Bound.-Lay. Meteorol., 149, 381–402,
https://doi.org/10.1007/s10546-013-9849-3, 2013. a, b
Zhou, B. and Chow, F. K.: Turbulence Modeling for the Stable Atmospheric
Boundary Layer and Implications for Wind Energy, Flow Turbul.
Combust., 88, 255–277, https://doi.org/10.1007/s10494-011-9359-7, 2012. a
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.,
Mauritsen, T., and Miles, M. W.: Turbulence energetics in stably stratified
geophysical flows: Strong and weak mixing regimes, Q. J. Roy. Meteorol. Soc.,
134, 793–799, https://doi.org/10.1002/qj.264, 2008. a
Short summary
Atmospheric stably stratified boundary layers display transitions between regimes of sustained and intermittent turbulence. These transitions are not well represented in numerical weather prediction and climate models. A prototype explicitly stochastic turbulence parameterization simulating regime dynamics is presented and tested in an idealized model. Results demonstrate that the approach can improve the regime representation in models.
Atmospheric stably stratified boundary layers display transitions between regimes of sustained...