Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
NPG | Articles | Volume 26, issue 4
Nonlin. Processes Geophys., 26, 381–399, 2019
https://doi.org/10.5194/npg-26-381-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nonlin. Processes Geophys., 26, 381–399, 2019
https://doi.org/10.5194/npg-26-381-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Nov 2019

Research article | 05 Nov 2019

Generalization properties of feed-forward neural networks trained on Lorenz systems

Sebastian Scher and Gabriele Messori

Viewed

Total article views: 2,017 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,180 802 35 2,017 46 34
  • HTML: 1,180
  • PDF: 802
  • XML: 35
  • Total: 2,017
  • BibTeX: 46
  • EndNote: 34
Views and downloads (calculated since 14 Jun 2019)
Cumulative views and downloads (calculated since 14 Jun 2019)

Viewed (geographical distribution)

Total article views: 1,420 (including HTML, PDF, and XML) Thereof 1,409 with geography defined and 11 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 10 Aug 2020
Publications Copernicus
Download
Short summary
Neural networks are a technique that is widely used to predict the time evolution of physical systems. For this the past evolution of the system is shown to the neural network – it is trained – and then can be used to predict the evolution in the future. We show some limitations in this approach for certain systems that are important to consider when using neural networks for climate- and weather-related applications.
Neural networks are a technique that is widely used to predict the time evolution of physical...
Citation