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Abstract. Neural networks are able to approximate chaotic
dynamical systems when provided with training data that
cover all relevant regions of the system’s phase space. How-
ever, many practical applications diverge from this idealized
scenario. Here, we investigate the ability of feed-forward
neural networks to (1) learn the behavior of dynamical sys-
tems from incomplete training data and (2) learn the influ-
ence of an external forcing on the dynamics. Climate sci-
ence is a real-world example where these questions may be
relevant: it is concerned with a non-stationary chaotic sys-
tem subject to external forcing and whose behavior is known
only through comparatively short data series. Our analysis is
performed on the Lorenz63 and Lorenz95 models. We show
that for the Lorenz63 system, neural networks trained on data
covering only part of the system’s phase space struggle to
make skillful short-term forecasts in the regions excluded
from the training. Additionally, when making long series of
consecutive forecasts, the networks struggle to reproduce tra-
jectories exploring regions beyond those seen in the training
data, except for cases where only small parts are left out dur-
ing training. We find this is due to the neural network learn-
ing a localized mapping for each region of phase space in the
training data rather than a global mapping. This manifests it-
self in that parts of the networks learn only particular parts
of the phase space. In contrast, for the Lorenz95 system the
networks succeed in generalizing to new parts of the phase
space not seen in the training data. We also find that the net-
works are able to learn the influence of an external forcing,
but only when given relatively large ranges of the forcing
in the training. These results point to potential limitations of
feed-forward neural networks in generalizing a system’s be-
havior given limited initial information. Much attention must

therefore be given to designing appropriate train-test splits
for real-world applications.

1 Introduction

1.1 Neural networks for weather and climate
applications

Neural networks are a series of interconnected — potentially
nonlinear — functions whose mutual relations are “learned”
by the network by training on data. One of their many ap-
plications is forecasting the time evolution of dynamical sys-
tems. In this context, the neural networks are trained on long
time series issued from the dynamical system of interest and
can then in principle be used to forecast the system’s evo-
lution from new initial conditions. Examples of applications
include classical physical systems like the double pendulum
(Bakker et al., 2000) and the widely studied Lorenz toy mod-
els of the atmosphere (e.g., Vlachas et al., 2018; Dueben and
Bauer, 2018).

In recent years, neural networks have enjoyed growing
attention in climate science. Applications include param-
eterization schemes in numerical weather prediction and
climate models (Krasnopolsky and Fox-Rabinovitz, 2006;
Krasnopolsky et al., 2013; Rasp et al., 2018), post-processing
of numerical weather forecasts (Rasp and Lerch, 2018), em-
pirical error correction (Watson, 2019), predicting weather
forecast uncertainty (Scher and Messori, 2018) and doing
actual weather forecasts and climate model emulations in
simplified realities (Dueben and Bauer, 2018; Scher, 2018;
Scher and Messori, 2019a), as well as doing actual weather
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forecasts (Weyn et al., 2019). These increasingly widespread
practical applications warrant a more systematic evaluation
of the possibilities and limitations of neural networks for the
simulation of complex dynamical systems.

In this paper, we focus specifically on the widely used
feed-forward neural networks and address two open ques-
tions related to their use for approximating the dynamics of
chaotic systems.

— Can neural networks infer system behavior in regions of
the phase space not included in the training dataset?

— Can neural networks “learn” the influence of an exter-
nal forcing driving slow changes in the system they are
trained on?

We adopt an empirical approach: we generate long time se-
ries with numerical models and then perform experiments
with neural networks on these data. We specifically use the
Lorenz63 (Lorenz, 1963) and Lorenz95 (Lorenz, 1996) mod-
els. These (and other variants of the Lorenz95 system) are
widely used as toy models for studying atmosphere-like sys-
tems, also in the context of machine learning (e.g., Vlachas
et al., 2018; Watson, 2019; Lu et al., 2018; Chattopadhyay
et al., 2019) and parameter optimization (e.g., Schevenhoven
and Selten, 2017).

Both the questions we raise are of direct relevance to cli-
mate applications. Our knowledge of the high-frequency evo-
lution of the climate system issues from comparatively short
time series, which only explore a small subset of the possible
states of the system. This is particularly true for the ocean,
which has much longer characteristic timescales than the at-
mosphere, and for applications to paleoclimatic variability.
Moreover, the accelerating anthropogenic forcing will likely
lead to significant changes in the climate’s future evolution.
The two points we raise are therefore crucial in the context
of using neural networks for weather forecasting and for em-
ulating climate models. They could be reformulated in more
practical terms, such as whether neural networks have the
potential to reproduce unprecedented states of the climate
system. Similarly, could they learn the influence of unprece-
dented greenhouse-gas concentrations on the dynamics of the
climate system, given a past record of the system subjected
to varying greenhouse-gas levels?

1.2 Related work on generalization properties of
neural networks

The question of generalization is a central aspect in machine
learning and is a well-studied topic for neural networks (e.g.,
Hochreiter and Schmidhuber, 1995; Hardt et al., 2015; Zhang
et al., 2016). One of the remarkable properties of deep neural
networks is that, in contrast to statistical learning theory, in
many cases they generalize better when having more free pa-
rameters. The recent success of deep neural networks in a va-
riety of applications and their empirically demonstrated gen-
eralization abilities have stimulated investigations into the
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underlying mechanisms. For example, Wu et al. (2017) ar-
gued that the reasons for their good generalization properties
are the landscape characteristics of the loss function. Novak
et al. (2018) argue that generalization is favored by high ro-
bustness to input perturbations of the trained networks in the
vicinity of their training manifold, despite their large num-
bers of parameters. Another well-studied aspect is machine
learning under covariate shift — the situation where the prob-
ability distribution of training and test data is not the same
(e.g., Sugiyama and Kawanabe, 2012). This amounts to a
special class of non-stationarity problems and is partly re-
lated to our question 2 (learning external forcings).

The bulk of the literature on the above topics has focused
on image recognition and related fields, and the extent to
which these results may apply to dynamical systems is un-
clear. To the authors’ knowledge, the generalization proper-
ties of neural networks applied to dynamical systems, and
specifically to Lorenz systems, are yet to be studied in detail.

2 Emerging challenges in neural networks for
dynamical systems

Question (1) we framed above relates to whether the network
learns a “global” function mapping the state vector x from
one time step to the next,

fxX) ix > Xpq1, 6]

or whether it learns N individual functions for N different
regions of the phase space:

f1(x) x eregiony,
f2(x) x eregion,,

fo=1" : @
fn(x) x eregiony.

Even though mathematically equivalent, the latter would
imply that different parts of the network are responsible for
different regions of the phase space. For some applications
this may be irrelevant, as long as the network forecasts work.
However, it has major implications for how the network gen-
eralizes to regions of the phase space that are not covered in
the training data.

Neural networks can tend to overfit — meaning they work
very well on the training data but do not generalize and there-
fore do not work on new data. Therefore, they are usually
tested on data not used for the training. Given a dataset, it
is not trivial to decide how to split the data into training and
test sets. For data without autocorrelation, a random split on a
sample-by-sample basis may be suitable. For autocorrelated
time series, it is common to split the data into continuous
blocks (e.g., using the first 80 % of a time series for training
and the last 20 % for evaluation). In a real-world application
to the atmosphere, one could train the network on the first
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years of available observations and then test on the remain-
ing available years (e.g., Rasp and Lerch, 2018; Scher and
Messori, 2018). For the Lorenz models, the train-test splits
are typically designed such that samples in the test set are
not contained in the training set but at the same time ensure
that both the training and the test sets cover all regions of the
phase space with some reasonable density. That is, no large
contiguous regions of the phase space are left out of either set
of data (e.g., Pasini and Pelino, 2005; Vlachas et al., 2018).

Here, we consider the opposite situation, namely a sce-
nario where the training data cover only part of the system’s
phase space. We know from the definition of the Lorenz63
and Lorenz95 models that the underlying equations are in-
variant across the phase space. If the network can truly learn
the system’s dynamics, and thus successfully approximate
the underlying equations, then it should be able to provide
useful information concerning the system’s behavior in those
regions of the phase space not included in the training data.
More generally, for a long series of successive forecasts the
network should thus be able to reconstruct the full attractor.
However, should the network instead learn a set of functions
each applicable locally, then one would expect the network
to fail in regions not explored during the training. In a cli-
mate science context, this would for example be relevant for
the ocean. The latter’s long characteristic timescales imply
that observational datasets may cover only part of the phase
space. It is also relevant in forecasting extreme events in the
atmosphere.

Question (2) relates to how well a network can learn the
influence of a slowly varying variable (the “forcing” in a gen-
eral sense) on the evolution of the fast-varying variables (the
system state). The influence of the slowly varying forcing on
the short-term dynamics is potentially very small compared
to the typical variability of the systems, making the task of
learning simultaneously the dynamics and the influence of
the external forcing challenging, even when the forcing is
provided as additional input to the network.

3 Methods
3.1 The Lorenz63 and Lorenz95 models

The Lorenz63 model (Lorenz, 1963) is a three-variable sys-
tem defined by the following ordinary differential equations:

x=o0(y—x),
y=x(—2)—Y,
z=xy— Bz. 3)

Weuse 0 = 10, 8 = 8/3 and p = 28, the standard parame-
ter combination with which the system — despite its simplic-
ity — generates chaotic behavior (the characteristic “butter-
fly” shape; see Fig. 1a). We integrate the system with a time
step of + =0.01 with the LSODA solver from ODEPACK
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(Hindmarsh, 1983) as provided by scipy (Jones et al., 2001).
While the Lorenz63 model is a very rough approximation of
atmosphere-like dynamics, the fact that it only has three vari-
ables allows us to easily visualize the complete phase space
and define regions that can be excluded from the training
data. This makes it ideally suited to tackling the first ques-
tion we pose (generalization to unseen phase-space regions).

The Lorenz95 model (Lorenz, 1996, also often referred
to as the Lorenz96 model) is a one-dimensional model that
approximates the atmosphere as a series of N grid points
wrapped around a circular domain:

Xi=Xip1 —xi—2)Xi—1 —x; + F, 4

withi =1...N and (xy+1 = x1). Here we choose N =40. F
is a forcing term. With F = 4 the system shows periodic be-
havior; with increasing F the behavior becomes increasingly
chaotic, and with F' = 16 it is highly turbulent. An example
of a Lorenz95 model integration is shown in the left panel
of Fig. B1d. Note that there is also a second model often re-
ferred to as the Lorenz95 or Lorenz96 model, which uses a
second (and sometimes a third) dimension. This model is not
considered here. Like the Lorenz63 model, we integrate the
system with the LSODA solver from ODEPACK.

3.2 Neural network for Lorenz63

For the Lorenz63 model we use fully connected networks
with ReLu activation functions in the hidden layers and a
linear output layer. The main configuration used in this study
was determined via a tuning procedure (Appendix A). It con-
sists of two hidden layers with 128 neurons each. The net-
work takes as input all three Lorenz63 variables and as out-
puts all three variables one time step later. The training is
done with the adam optimizer (Kingma and Ba, 2015). Over-
fitting is controlled via an early-stopping rule. The training
is stopped when the skill on a validation dataset (last 10 %
of the training set) has not increased for 4 training epochs,
with a maximum of 100 epochs. For the forcing experiments,
we additionally use a second architecture, where the network
has four input parameters (the three Lorenz63 variables and
the parameter o; see Eq. 3) and the same three output vari-
ables as the standard setup. No regularization techniques are
used. Part of our experiments are repeated with the same ar-
chitecture but trained on forecasting the tendency (difference
between the following and current states) rather than the fol-
lowing state directly.

3.3 Neural network for Lorenz95

For the Lorenz95 model, we use a convolutional network that
works on the periodic domain. Convolutional networks have
already successfully been used on gridded data from simpli-
fied general circulation models in Scher (2018) and Scher
and Messori (2019a). The configuration used here was tuned
with an exhaustive grid search over different network config-
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urations. The tuning procedure is described in Appendix B.
We tuned the network for forecasting 1, 10 and 100 time
steps, where each time step corresponds to 0.01 time units
of the Lorenz95 model. The network trained for 10 time-
step forecasts (a two-layer convolution network with a kernel
size of 5; see Appendix B) worked best for virtually all lead
times (see Fig. B1), and we use this architecture in our anal-
ysis. For the forcing experiments, the parameter F at each
time step was expanded to the number of grid points of the
Lorenz95 model and added as an additional input channel
to the network. As for the Lorenz63 model, the network di-
rectly forecasts the next state of the system. Overfitting is
controlled via an early-stopping rule. The training is stopped
when the skill on a validation dataset has not increased for 4
training epochs, with a maximum of 30 epochs. No regular-
ization techniques are used.

3.4 Evaluating the reconstruction of the Lorenz63
attractor

In most of our experiments, the neural networks are trained
by minimizing errors of single-step (and thus short-term)
forecasts. Therefore, they may not always reproduce a sta-
ble system when making a long series of consecutive fore-
casts — a known issue when applying neural networks to
chaotic systems (e.g., Bakker et al., 2000). For Lorenz63,
the trained network often made very good short-term fore-
casts, but when attempting to produce long series of iterative
forecasts (which, in the context of climate science, would
be analogous to producing a “climate run” from successive
meteorological forecasts), the system collapsed into a fixed
point. Since the training of our network is computationally
inexpensive, we use a brute force method to find a network
that yields both skillful short-term forecasts and a realistic
long-term system evolution. We train 10 networks, and then
select the network that best reproduces the attractor when
started from a random point in the training dataset. This is
evaluated by comparing the reconstructed attractor to the
training data using

[
2
rmse (p) = \/(Pi,j,k,model - Pi,j.,k,network) s )

where p; ;i is the density of discrete data points in the grid
box i, j, k. We will hereafter term this the “density-selection”
approach. The grid boxes have size 0.3 x 0.3 x 0.3 on the nor-
malized domain (normalization based on the training set; the
output of the networks is always in the normalized domain).

This approach is somewhat problematic when training the
network on specific regions of the phase space. In principle,
we could apply exactly the same procedure to compare the
densities of the reconstructed attractor and of the training
data. However, for incomplete training data — for example,
only one wing of the butterfly — then a perfect reconstruction
of the full attractor would fail this test, since the training data
include no information beyond the one wing. If the neural
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network were to learn a “wrong” attractor, namely one that
only covers regions close to the wing included in the train-
ing, this network would pass the test and be selected, even
though it clearly has undesirable characteristics. An alterna-
tive approach is to compare the reconstructed attractor with
the full attractor. This solves the aforementioned problems,
yet is flawed in terms of information availability at time of
training. In a real-world setting, we would not know what
the full attractor of a complex system — for example our at-
mosphere — looks like. Nonetheless, in our idealized setting
this approach allows us to verify whether the network learns
regional or global dynamics. We will hereafter term it the
“density-full approach”.

4 Reconstructing Lorenz systems using only part of the
phase space

4.1 Lorenz63
4.1.1 Training the networks

We first verify that our networks can successfully repro-
duce the Lorenz63 attractor given training data from across
the system’s phase space. We train 10 networks on a long
Lorenz63 simulation (1 x 10° time steps) meant to explore
all regions of the butterfly, and make forecasts 0.01 time
units ahead. The networks are then initialized with a ran-
dom state out of the test dataset, and we make 1 x 10° con-
secutive forecasts (by feeding the forecast back into the in-
put). Figure 1la, b show the training data and the attractor
reconstructed by the neural network. The network attractor
reproduces the typical “butterfly” shape and, most impor-
tantly, it neither drifts into a periodic orbit nor collapses into
a fixed point. Its main deficiency is that the inner regions of
the wings are slightly underpopulated. Figure 1c shows the
mean absolute error (MAE) of one-step network forecasts
initialized at every point in the test set. The forecasts typi-
cally display small errors (< 0.03). The highest errors occur
in the edges of the wings, where recurrences are rare and the
intrinsic predictability of the system is low (Faranda et al.,
2017). To put forecast errors throughout the paper in context,
panel d shows the tendency (change over one time step) of
the model in different phase-space regions.

We next consider the question of training on incomplete
data. We take a somewhat drastic approach and we select data
that explore only limited regions of the phase space. This se-
lection is done by “cutting out” contiguous regions of the
phase space. Since the training is done on data pairs (time
steps #; and ¢;+1), the points at the locations where the tra-
jectories are truncated are removed from the training data to
avoid artificial “jumps” towards the next included point (this
is necessary because we removed parts of the model’s trajec-
tory). First, we investigate whether neural networks trained
on different phase-space regions are able to make short-

www.nonlin-processes-geophys.net/26/381/2019/



S. Scher and G. Messori: Neural network generalization Lorenz systems 385

Full model run

Abserror full 0.0175
0.0150
0.0125
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0.0075
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Network full clim

Figure 1. (a) A long integration of the Lorenz63 model. (b) Time series produced with a neural network optimized on short-term forecast
error, initialized from a random initial state not used in the training. (¢) Short-term forecast errors of the neural network initialized at a large
number of points not used for training. (d) Tendencies for one time step (#; 1 — ¢i). Note the different color scales in (c¢) and (d).

term forecasts in other parts of the attractor. Then, we assess
whether it may be possible to reconstruct the full attractor
with these networks.

4.1.2 Short-term forecasting

Figure 2 shows the short-term forecast error for a network
trained only on the left wing (a, d), only on the right wing
(b, e) and on a butterfly with a truncated right wing tip (c,
f). In the wing where training data were present, the fore-
cast error is very similar to the error of the network trained
on the full attractor (Fig. 1c). In the wing that was excluded
during training, the forecast error is much higher. It is in
fact so high (mean absolute error on the order of 0.7) that
the forecasts have little to do with the real system. Closer
examination reveals that when initialized in the “missing”
wing, the forecasts point back towards the “training” wing
(see Sect. 4.1.3). When excluding only the tip of the right
wing, the network manages to make somewhat reasonable
forecasts in the “missing” region, and does not systematically
point back to the region seen in the training. Nonetheless, the
forecast errors in the “missing wing tip” are roughly an or-
der of magnitude higher than in the regions included in the
training (Fig. 2c, f). These findings suggest that the network
does not learn a global mapping, but a localized one which
fails in previously unexplored regions. The results are similar
when using networks that forecast the tendency only instead
of the following state (Fig. C1). The main difference is that

www.nonlin-processes-geophys.net/26/381/2019/

when training on only one wing, the error in the other wing
is roughly halved relative to Fig. 2, albeit still orders of mag-
nitude higher compared to training on the whole attractor.
When initializing forecasts in the left-out wing, the trajecto-
ries are unstable and drift outside of the training domain (not
shown). In this respect, the architecture that forecasts ten-
dency is doing even worse than the architecture forecasting
the state. The simplicity of the system allows us to examine
the above results further by looking at the activation of the
individual neurons in the network. For this, we inspect a net-
work that was trained on the whole attractor (and provides
good forecasts on the whole attractor).

Figure 3a, b show the distribution of activations (i.e., out-
put) of the hidden neurons for the network trained on the
whole attractor when fed with input from the left wing only
(green) and from the right wing only (orange). Shown are the
20 neurons with the largest absolute differences in the stan-
dard deviation of activations in the two wings. The distribu-
tion of activations for all neurons (without specific ordering)
is shown in Fig. C2 in the Appendix. Some neurons have
very similar activations in both wings, whereas the distribu-
tions of other neurons change significantly. In both wings,
some of the neurons have very little spread in activation,
meaning that their output is relatively independent of the ex-
act location within the wing. However, these “low-variance”
neurons are not the same in the two wings. We hypothesize
that they correspond to a localized mapping that the network
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Model truncated

Abserror trunc on full

(d)

Model truncated

Abserror trunc on full

Model truncated

Abserror trunc on full

Figure 2. Truncated sets of Lorenz63 training data (a—c) and short-term forecast error (MAE) of neural networks trained on these sets (d—f).

Note the different color scales in (d—f).

learned for the other wing. This would mean that the neurons
learned to correctly map the system in one wing — and are
thus active and contributing to the forecasts in that wing —
but they are inactive in the other wing (i.e., do not contribute
to the forecasts). To test this, for each layer we identify the
n neurons with the least spread in activation (defined here
as the standard deviation of the activation) for all points on
each wing. We then create modified networks by fixing the
output of each of these neurons in turn at their mean acti-
vation level for the relevant wing. Note that there are also
some “dead” neurons, which always have zero activity in
both wings. These we ignore. With this modified network, we
make forecasts on the whole attractor. The result for n = 20
is shown in Fig. 3c, f. The effect of fixing the activations
of the neurons that have low spread in the left wing is that
the forecast error in part of the right wing increases sharply,
whereas the error in the left wing is nearly unchanged. The
same is seen for forecasts in the left wing when fixing the
activations of the neurons that have low spread in the right
wing. The structure of the errors is very similar to that of the
networks trained only on one wing (Fig. 2). Panels 3e, f give
a more systematic overview. They show the forecast errors
of the modified networks on the left wing (green) and the
right wing (orange), when fixing the 1,2, ...100 neurons the
have lowest variance in the left and right wings, respectively.
When fixing the left wing “low-variance” neurons, the er-
ror in the right wing increases with even a single deactivated
neuron, and rises monotonically with every additional deac-
tivation (Fig. 3e). In the left wing, on the other hand, the error
stays very close to the error of the unmodified network, and
only starts to increase beyond 20 deactivated neurons. Corre-
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sponding results are found when fixing low-activity neurons
in the right wing (Fig. 3f).

The above suggests that these roughly 20 neurons corre-
spond to the localized mapping part of the network we had
speculated about earlier, and deactivating them forces the
network to fall back to its global mapping, which we have
seen is poor. This test was repeated for different network ar-
chitectures (different number of hidden layers, and different
hidden layer sizes). In all we tested 20 different architectures
(smallest: 1 hidden layer with 8 neurons; largest: 8 hidden
layers with 128 neurons each). The result for eight of these
architectures (ranging from shallow networks with narrow
layers to deep networks with wide layers) are shown in Fig. 4.
The behavior is very similar to that seen in Fig. 3, except that
in some cases the error does not grow monotonically with an
increasing number of deactivated neurons. The results for the
additional architectures we tested were similar (not shown).
The only exception is the deepest architecture with very nar-
row layers (eight layers with eight neurons each), in which
deactivating a single low-activity neuron per layer degrades
forecasts in both wings (not shown).

4.1.3 Reconstructing the full attractor

We next attempt to use neural networks trained on incom-
plete data to reconstruct the full attractor. We already showed
in Sect. 4.1.1 that this is possible when training on the whole
attractor. When we remove only a small part of the attractor
from the training data (the tip of the right wing, Fig. 5a), the
networks are able to reproduce a reasonable attractor regard-
less of whether they are selected using the density-selection
(Fig. 5b) or the density-full approach (Fig. 5¢) — see Sect. 3.4.
As could be inferred from the short-term forecasts, the neural
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Figure 3. Boxplots showing the distribution of neuron activations per neuron for hidden layer 1 (a) and hidden layer 2 (b), split by wing
(color in plot). Short-term forecast errors (MAE) for the networks in which in each layer the activation level of the 20 neurons with lowest
variance are fixed at its mean value for the left (¢) and right (d) wings. Short-term forecast errors of the network with 1-100 low-variance
neurons per layer in the left (e) and right (f) wings deactivated, split up by wing (solid lines). The dashed lines show the forecast errors of the

unmodified network.

networks are thus able to explore regions that are not visited
by any of the trajectory segments in the training data. How-
ever, networks trained on single wings fail to reconstruct the
full attractor (Fig. Se, h), independent of the selection cri-
terion used. These networks either failed the selection tests
or produced trajectories that populate only the wing used in
the training. The networks also fail to explore the other wing
when they are initialized from states within it. In this case,
the trajectories immediately point back to the wing the net-
work was trained on and reach it after a couple of iterative
forecasts (Fig. 5f, i), implying that the network reproduces a
dynamics that populates only the wing that was included in
the training.

4.2 Lorenz95

In the Lorenz95 system, which in our setup has a dimen-
sionality of 40, it is harder to define reasonable regions of
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phase space to be excluded from training than in the three-
dimensional Lorenz63 system. A logical step to tackle this
problem would be to use a method like principal component
analysis to reduce the dimensionality of the system before
partitioning its phase space. However, the leading principal
component of the Lorenz95 system can only explain 8 %
of the variance (not shown), meaning that it is not possible
to reduce the system to a small number of principal com-
ponents while still capturing most of its variance. A differ-
ent approach is to look at Poincaré sections. These are two-
dimensional projections of the phase space spanned by two
variables, often used in the analysis of dynamical systems.
While this approach seems intuitive, it is problematic in our
context. If we define a region of the phase space to leave
out of the training (by defining a region spanned by two
variables), we can cut out all states of the model run that
fall within these regions. However, if there were identical
states to these, but shifted one or more grid points, then these
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Figure 4. As Fig. 3e but for different neural network architectures. (a) Shallow and narrow (1 hidden layer with 8 neurons); (b) shallow and
wide (1 hidden layer with 128 neurons); (c¢) intermediate (2 hidden layers with 32 neurons each); (d) deeper intermediate (4 hidden layers
with 32 neurons each); (e) deep and wide (4 layers with 128 neurons each); (f) very deep and wide (8 layers with 128 neurons each).

states would not be excluded. The symmetry of the system
(which also translates to the symmetry in the circular con-
volutional network architecture used), implies that the net-
work can forecast states excluded from the training data with-
out learning any extrapolation, as long as (near-)identical but
shifted states are seen while training. Indeed, due to the cir-
cular convolution, original and shifted states are equivalent
for the network. Based on these considerations, we use an-
other method to define Poincaré sections of the Lorenz95
system. We first transform the system states to spectral space
with a fast Fourier transform (FFT). We then compute the
amplitude of each wavenumber (absolute value of the com-
plex wavenumber coefficients), thus removing all informa-
tion about the position of the waves. We next find the pair of
wavenumbers whose amplitudes have least correlation and
define a Poincaré section based on these.

Since the Lorenz95 model is very cheap to run, we can
also — in analogy to the Lorenz63 experiment — define a
phase-space region by setting a certain range for all 40 vari-
ables. Due to the low density of data points in such a high-
dimensional space, this would exclude only very few points
from our standard 1 x 10° time-step run, and likewise, only
few points in the test set would lie in this region. Therefore,
for this approach we generate an additional test set. We run
the model until we have 1 x 103 points that lie in the region
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cut our from training. Due to the symmetry considerations
mentioned above, we do this in the 20-dimensional space of
absolute wavenumber coefficients.

To implement the first method we “cut out” squares of the
spectral Poincaré section and train a network on the rest of
the data. We then use the network to forecast the whole at-
tractor on a test set, and we compare it to the skill of the
same network trained on the whole attractor (which has good
forecast skill; see Appendix B and Fig. B1). Each training is
done 10 times, and the forecast errors averaged over these 10
realizations. The results are shown in Fig. 6a, b. The short-
term forecast errors in the left-out region are indistinguish-
able from the errors in the other regions, meaning that the
network does succeed in generalizing to regions not seen in
training. This is also the case for other choices of left-out
regions (not shown).

For the second method, we remove all training points that
lie within the range [0, 10] for every wavenumber. Again,
the experiment is repeated 10 times. The result is shown in
Fig. 6¢, d. Again, the short-term forecast errors in the re-
gion left out in the training are indistinguishable from errors
in other regions. Also, the difference between the errors of
the network trained on all points and those of the network
trained on the truncated set is smaller than the difference be-
tween different training realizations (not shown). Finally, we
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Figure 5. Reconstruction of the Lorenz63 system with neural networks trained on truncated data. (a, d, g) Truncated sets of Lorenz63 training
data. Reconstructed attractors with networks trained on (a) and selected using the density-full (b) and density-selection (c¢) approaches. (e,
h) Reconstructed attractors trained on (d) and (g) respectively, selected based on having no repeated points. (f, i) trajectories initialized with
random points from the region of the attractor that was left out in the training data in (d) and (g), respectively. The points in (f) and (i) indicate

single forecast steps.

test whether a long run of 1 x 10* consecutive NN forecasts
explores the regions of phase space left out from the train-
ing data. The runs were initialized from a random state of the
test set not lying in the left-out region. For all 10 trained net-
works, the runs did explore the left-out region (not shown).

5 Learning external forcings of Lorenz systems
5.1 Lorenz63

As an external “forcing” scenario we consider a gradual lin-
ear increase in the o parameter (Eq. 3). We train the network
architecture using o as input (see Sect. 3.2) on Lorenz63 runs
with 1 x 10° time steps, with linearly increasing o over the
whole run. We perform six different runs, encompassing dif-
ferent o regimes: two runs in a low (varying o from 7 to 8
and 6 t0 9), two in an intermediate (10 to 11 and 9 to 12), and
two in a high regime (12 to 13 and 11 to 14). The networks
are then evaluated on a set of 10 Lorenz63 test runs (length
1 x 10° time steps) with o fixed at4, 5,6, 7, §, 8.5, 9, 10, 12
and 14, respectively. In addition to the main network, two ref-
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erences are used. Firstly, a network trained on the Lorenz63
run with varying o, but not using o as input (termed “no
input”). This network is then evaluated on the above fixed o
runs. Secondly, for each run with fixed o, an identical run but
with different initial conditions is made. Then, a network not
using o as input is trained on the latter run, and evaluated on
the former run with the corresponding fixed o (termed “fixed
0”). The short-term forecast quality is assessed by initializ-
ing one-step forecasts from every state in the test runs, and
computing the MAE. Each experiment is repeated 10 times,
using the same training and test data, to capture potential in-
fluences of random components in the training.

The results are shown in Fig. 7. Each panel represents a
certain training range in the forcing (indicated by the grey
area), and the lines show the MAE of one-step forecasts. The
“fixed o networks (green lines) can be seen as a an upper
baseline, as their skill is that obtained when training in the
same forcing regime as used for evaluation. It is not expected
that the main network (the one using o as input and trained
on the run with linearly increasing o) would do better than
this reference. The “no input” networks (yellow lines) can be
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Figure 6. Networks trained only on part of the Lorenz95 phase space. Short-term forecast errors of the network trained on full training set (a)
and a truncated set selected on a Poincaré section in spectral space (b), projected onto said Poincaré section. The rectangle denotes the region
of phase space left out from training. (¢, d) Short-term forecast errors of a network trained on a truncated set selected on all 20 spectral
components. (¢) shows all points in the test set, (d) only the points that lie in the region cut out from training.

used as a lower baseline, as this should be the skill that can
be achieved without having any knowledge of the changing
forcing. When trained on the narrow forcing regimes, the net-
works have trouble making good forecasts outside the train-
ing regime. The forecasts are indeed so poor that even the “no
input” networks outperform them. In other words, the addi-
tional information provided by o actually leads to a deterio-
ration in skill. This changes slightly when training on broader
regimes. Here, the forecast errors of the networks using o as
input are similar to the “no input” networks, although in most
cases they are still far from matching the “fixed o> networks.

5.2 Lorenz95

We next consider a variable forcing scenario for the
Lorenz95 system. The setup is analogous to the Lorenz63
forcing experiment, but here we change F' instead of o. With
F =4, the system shows periodic behavior; as F increases,
the system becomes more and more turbulent. We consider
two low (varying F from 5 to 6 and from 4 to 7), two inter-
mediate (8 to 9 and 7 to 11), and two high forcing regimes
(12 to 13 and 11 to 14). The runs are evaluated for F fixed at
4,5,6,7,8,8.5,9, 10, 12 and 14. In addition to evaluating
short-term forecast performance as in the Lorenz63 forcing
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experiment, for Lorenz95 we also assess the ability of the
trained networks to reconstruct the “climate” (or attractor) of
the model by making a 1 x 10° time-step climate run with the
network and then computing the mean and standard deviation
of the run (averaged over all grid points).

The results are shown in Fig. 8. Each row represents a spe-
cific training range in the forcing (indicated by the grey area).
The left panels show the MAE of short-term forecasts, while
the right panels show the mean and standard deviation of the
reconstructed climates, as well as the mean and standard de-
viation of the Lorenz95 model. Each line represents 1 of the
10 runs made for each experiment. For the three experiments
that are trained on narrow forcing regimes (5 to 6, 8 to 9 and
12 to 13), the main networks do not seem able to learn the in-
fluence of the forcing and extrapolate to new regimes. In all
experiments, the main network has much higher short-term
MAE than the “fixed F”” networks. When trained on the low
or middle regimes, the forecasts are even worse than those
of the “no input” networks. As for Lorenz63, the additional
information provided by the forcing term therefore leads to
a poorer performance of the network. This picture changes
when training on broader forcing regimes (lower three rows
in Fig. 8). Even though there is a large variation between
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Figure 7. Short-term forecast errors for “forcing” experiments with Lorenz63. Networks are trained on a run with 1 x 10° time steps with a
linearly increasing parameter o from the lower to upper ends of the grey shaded area in the panels and then tested on runs with fixed o. The
blue lines show the errors for networks that include o as input. The yellow lines show the networks without ¢ as input (“no input” networks
in the text). The green lines show reference networks without o as input that are trained on runs with o fixed to the same value as the test

runs (“fixed o networks in the text).

the individual training realizations of the main network, both
the ones trained on the high and on the intermediate forcing
regimes outperform the “no input” networks. This implies
that, given a wide enough forcing regime in the training, the
network is able to learn — at least part of — the influence of
the forcing on the dynamics, and extrapolate this influence to
new forcing regimes.

6 Discussion and conclusion

In this study, we explored how well feed-forward neural net-
works can (1) generalize the behavior of a chaotic dynamical
system to its full phase space when trained only on part of
said phase space and (2) learn the influence of a slow exter-
nal forcing on a chaotic dynamical system. Both points are
of direct relevance to the application of neural networks in
climate science. The climate system is highly chaotic, our
observational data likely include only a small portion of the
possible states of the system and we are subjecting the sys-
tem to a slowly varying forcing by emitting large amounts
of greenhouse gases. To address these points, we used two
highly idealized representations of atmospheric processes,
namely the Lorenz63 and Lorenz95 models. We used feed-
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forward neural network architectures that are shown to work
well on these systems when trained on the full phase space
and without external forcing.

For the first point we raise, we showed that networks
trained on only part of the Lorenz63 attractor are largely
unable to reproduce trajectories outside the regions they
were trained on. When making short-term forecasts initial-
ized from points in these unknown phase-space regions, the
trajectories of the network forecasts point back towards the
region included in the training. This makes the forecasts so
poor as to be practically useless. Similar issues arise when
running a large number of iterated forecasts, so as to repro-
duce a long trajectory of the system using the neural net-
works. Again, the network trajectories do not explore regions
of the phase space that were not included in the training.
The only exceptions are cases where very small regions are
excluded from the training data (and determining what the
limiting size is of “very small” remains an open question).
This implies that using neural networks for emulating climate
models, as proposed in Scher (2018) and Scher and Mes-
sori (2019a), may be more challenging than expected. The
same goes for making forecasts of unprecedented weather
or climate events, or of events originating from unprece-
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Figure 8. Short-term forecast errors and network attractor reconstructions for forcing experiments with Lorenz95. Networks are trained on
a run with linearly increasing F from the lower to upper ends of the grey shaded area in the plots and then tested on runs with fixed F. The
blue lines show the network that includes F' as input. The yellow lines show the networks without F' as input (“no input” networks in the
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“no F” networks in the text). The left panels show short-term forecast error, the right panels the mean and standard deviation of climate
runs performed with the networks and additionally the mean and standard deviation of Lorenz95 runs with F' fixed to the reference values
(orange lines).
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dented atmospheric or oceanic configurations. In contrast to
the results for the Lorenz63 system, our experiments for the
Lorenz95 system indicate that the networks can successfully
make forecasts in phase-space regions left out from training
and also explore these regions when making long simula-
tions. In this respect, we have to note the difficulty in defining
sensible regions of phase space for the Lorenz95 system with
its 40 dimensions. These difficulties would be even more se-
vere for more realistic systems like numerical general circu-
lation models. Still, this result is somewhat counter-intuitive,
as one may naively consider the Lorenz95 system to be more
complex than the Lorenz63 system. Therefore, our results in-
dicate that using intuitive definitions of the complexity of a
system to reason on the performance of feed-forward neural
networks is problematic.

For Lorenz63, we interpret our results as indicating that
the neural networks do not learn to approximate the equa-
tions underlying the dynamics of the system — which would
be akin to a “global mapping” — but rather develop a “re-
gionalized view” of the system, whereby specific neurons
contribute to the forecasts in specific regions of the phase
space. Thus, when parts of the phase space are left out, the
regionalized mapping fails to produce sensible estimates of
the system’s behavior beyond the regions it has already seen.
We confirmed this by inspecting the activations of individ-
ual neurons in the trained networks and showed that parts
of the network are responsible for specific regions of the
phase space. This is similar to findings in the context of
image recognition and generation, where different parts of
neural networks have been shown to represent different ob-
jects/concepts (Bau et al., 2019).

As a caveat, we note that our experiments, which remove a
large contiguous region of phase space from the training data,
are more penalizing than what may be expected in a typical
climate simulation. It is likely that the regions of the phase
space explored by the climate system during the satellite era
are more representative of the hypothetical climate attractor
than a single wing of the butterfly is for the Lorenz63 sys-
tem. Indeed, removing a wing is more akin to removing a
season from a training set — for example, asking a network
to simulate a seasonal cycle without ever being trained on
winter data — than having a training set which does not in-
clude some rare extreme events — which presumably live in
sparsely populated regions of the phase space which need not
be contiguous.

An additional challenge in this context that became obvi-
ous during the design of our experiments is the choice of cri-
teria to judge successful attractor reconstruction after train-
ing. As discussed in the methods section, in order to recon-
struct the attractor of a chaotic dynamical system with neural
networks, it is not enough to minimize the error of short-
term forecasts. Instead, one also needs to judge the trained
network on its performance for long series of iterated fore-
casts, and in particular on whether the resulting trajectories
resemble those of the original dynamical system. When the
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training data only cover part of the phase space, this raises the
issue of information availability, as in real-world applications
it would not be a valid approach to compare the reconstructed
attractor with the full attractor.

All our main experiments were done with feed-forward
neural network architectures that forecast the following state
of the system. We repeated some of our experiments with net-
works that forecasted the systems’ tendency instead. These
were better in producing short-term forecasts in new regions
of phase space but had even more trouble in producing stable
trajectories outside the training space. While feed-forward
architectures are widely used, there are many other architec-
tures available that potentially do not suffer from the issues
we found (for example, recurrent architectures, echo-state
networks and the related reservoir computers). Chattopad-
hyay et al. (2019) found that echo-state networks outper-
form feed-forward architectures in forecasting the Lorenz95
model, and it could be that this also holds for the extrapola-
tion issues addressed in this study. Regarding model archi-
tectures, for the forcing experiments it might also be pos-
sible that presenting the forcing in another way than done
here (e.g., designing into the network that the forcing vari-
able has different characteristics than the state variables) may
improve the learning of the influence of the forcing.

To address the second question we raised, we simulated an
external forcing on the Lorenz63 and Lorenz95 systems by
slowly changing model parameters. We then trained neural
networks both with and without the changing model param-
eters as additional input. Given simulations that span a large
enough range of forcing regimes, the networks that use the
forcing as input are indeed able to capture at least part of the
influence of the forcing, and extrapolate it to some extent to
new forcing regimes. The networks again perform better on
the Lorenz95 than the Lorenz63 system. This indicates that
the idea of emulating climate-change projections with neu-
ral networks might not be entirely unrealistic. However, it
would be very hard to know beforehand the range of forcing
regimes one would need in the training period. Additionally,
the networks trained with forcing as an input still perform
worse than networks directly trained on the target forcing.
Therefore, it may be unwise to apply an architecture that in
principle works reasonably on past atmospheric data (like the
one proposed by Dueben and Bauer, 2018) to future climates,
without very detailed testing. Our results are similar to Rasp
et al. (2018), who found that their neural network based on
a subgrid model is not able to extrapolate very far into new
climate states, even though it is able to interpolate between
different extreme climate states. Again, we should highlight
that our experiments are not meant to provide a direct match
to what may be seen in a climate model. For example, the
forcing in the Lorenz63 system is modulated by tuning a pa-
rameter that changes the dynamics of the system, while the
forcing term in the Lorenz95 system leads to transitions be-
tween periodic and turbulent regimes.
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More generally, our experiments were performed on
highly idealized systems, and it is hard to estimate the extent
to which they may generalize to more complex systems such
as atmospheric general circulation models or even global cli-
mate models. Nonetheless, Scher and Messori (2019a) have
shown that some insights drawn from simple models in the
context of machine learning do map to more complex sys-
tems. Finally, it is virtually impossible to robustly demon-
strate that neural networks cannot fulfill a specific task. In
fact, the Universal Approximation Theorem loosely states
that a feed-forward neural network can approximate any con-
tinuous function with any desired accuracy, as long as it has
a large enough number of hidden neurons (Hornik, 1991).
However, this does not mean that there is a practically feasi-
ble way to find the optimal network (network meaning here
both architecture and weights) and train it with sufficient
data.

We hope that this study can provide a starting point for
further discussion on the potentials and limitations of neural
networks in the context of chaotic dynamical systems. Fu-
ture studies could expand to more realistic systems (e.g., gen-
eral circulation atmospheric models) and explore neural net-
work architectures beyond the feed-forward networks used
here (e.g., recurrent architectures) and the influence of noisy
training data. Additionally, it would be interesting to extend
the analysis to the two-level version of the Lorenz95 model,
which would allow us to also compare the networks to “trun-
cated” versions of the model. Finally, a more mathematically
rigorous approach — as opposed to the empirical approach
used here — might shed interesting new light on the topic.

Code availability. The code wused for this study is
available in  the accompanying Zenodo  repository
(https://doi.org/10.5281/zenodo.3461683, Scher, 2019b) and on Se-
bastian Scher’s github repository (https://github.com/sipposip/code-
for-Generalization-properties-of-neural-networks-trained-on-
,Lorenz-systems/tree/revisionl, last access: 30 October 2019).
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Appendix A: Tuning of neural network architecture for
Lorenz63

The use of neural networks requires a large number of some-
what arbitrary choices to be made before the training of the
network even begins. The first step is to select a specific net-
work architecture and choose the so-called hyperparameters.
As basic architecture here we chose fully connected layers.
Next, we performed an exhaustive grid search over network
configurations and hyperparameters. The learning rate was
varied from 0.00003 to 0.003, the number of hidden layers
from 1 to 10, and the size of the hidden layers from 4 to 128.
The activation function was fixed to the rectified linear unit
(“ReLu”). A mini-batch size of 32 was used. The training
data were normalized to zero mean and unit variance. The
tuning was done with a Lorenz63 run with standard param-
eters, a time step of 0.01 and 2 x 10° time steps. While the
networks are all trained on short-term error, the final selec-
tion of network architecture was done by the ability of the
network to reconstruct the attractor (see Sect. 3.2). The best
architecture had two hidden layers with a hidden layer size
of 128 and a learning rate of 3 x 107°.

Appendix B: Tuning of neural network architecture for
Lorenz95

For the Lorenz95 model we chose as basic architecture
stacked convolution layers, which wrap around the circular
domain. The grid search was done over the following param-
eters: the learning rate was varied from 0.00001 to 0.003; the
kernel size of the convolution layers (the “stencil” the con-
volution operations uses) from 3 to 9; the number of convo-
lution layers from 1 to 9; and the depth of each convolution
layer from 32 to 128. Furthermore, both sigmoid and “ReLu”
activation functions were tested. A mini-batch size of 32 was
used. The training data were normalized to zero mean and
unit variance.

The tuning was done with a Lorenz95 run with F =8, a
time step of 0.01 and 1 x 10* time steps. It was performed
independently for forecast lead times of 0.01, 0.1 and 1. For
each lead time, a different network architecture worked best.
When training on lead times of 0.01, a single convolution
layer with kernel size 5 worked best. For a lead time of 0.1,
two convolution layers with kernel size 5 worked best, and
for a lead time of 1, nine convolution layers with kernel size
3 were the optimal choice. When considering how stacked
convolution layers work, this result is not surprising. The in-
formation available for forecasting the target value for a spe-
cific grid point is kernel-sized for a single layer and increases
with each additional convolution layer. From a physical point
of view, the information affecting the dynamics of a spe-
cific grid point comes only from the immediate neighborhood
for very short forecasts (given the nature of the Lorenz95
equations). With increasing lead time the information from
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an increasingly large part of the domain becomes important.
Therefore, it is intuitive that for making a longer forecast in
a single step, the network should have more convolution lay-
ers.

The network architecture trained on a time step of 0.1
made the best forecasts over lead times of up to ~ 4 time
units, in terms of both RMSE and anomaly correlation (when
making longer forecasts by iteratively making forecasts with
the network; see Fig. B1). We therefore chose this net-
work architecture (conv_depth = 128, kernel_size =5, learn-
ing_rate = 0.003, and two convolution layers with ReLu ac-
tivation) for the analyses presented in the study. This result
also suggests that there could be an “optimal” lead time that
neural networks should be trained on for chaotic dynamical
systems and is contrary to what Scher and Messori (2019a)
found on coarse-grained reanalysis data. Indeed, the latter
study concluded that the longer the training lead time, the
lower the forecast error. Our architecture only slightly over-
fits (Fig. Blc); that is, error on the test data is slightly higher
than on the training data. The network was trained until vali-
dation loss did not increase for 4 epochs, with a maximum of
30 epochs. The network architecture for the experiments in-
cluding the forcing F as input was tuned separately. For this,
a Lorenz95 run of 1 x 10* with linearly increasing F from 6
to 7 was used. The last 10 % of the run was used as validation
set.
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Figure B1. Evaluation of network architecture for the Lorenz95 system without F' as input. (a, b) Forecast error (on test data) for the best
network configurations when training on lead times of 0.01, 0.1 and 1 (different colors). (¢) Kernel density estimate of mean absolute forecast
error on training and test data for one-step forecasts of the network trained with a lead time of 0.1 and kernel density estimate of the mean
absolute one-step tendencies of the model (dashed line). (d) Examples of the Lorenz95 model (left) and the network model obtained through
iterated forecasts trained on a lead time of 0.1 (right), both initialized from the same initial state. (e) Autocorrelation for different time lags
of the model and the network “climate”.
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