Burlaga, L. F.: Interplanetary Magnetohydrodynamics, Oxford
University Press, New York, 1995.
a,
b,
c
Burlaga, L. F., Wang, C., and Ness, N. F.: A model and observations of the multifractal spectrum of the heliospheric magnetic field strength fluctuations near 40 AU, Geophys. Res. Lett., 30, 1543,
https://doi.org/10.1029/2003GL016903, 2003.
a,
b
Burlaga, L. F., F-Viñas, A., and Wang, C.: Tsallis distributions of magnetic field strength variations in the heliosphere: 5 to 90 AU, J. Geophys. Res., 112, A07206,
https://doi.org/10.1029/2006JA012213, 2007.
a,
b
Burlaga, L. F., Ness, N. F., and Stone, E. C.: Magnetic field
observations as Voyager 1 entered the heliosheath depletion region,
Science, 341, 147–150,
https://doi.org/10.1126/science.1235451, 2013.
a
Chang, T. T. S.: An Introduction to Space Plasma Complexity,
Cambridge University Press, Cambridge, UK, 2015. a
Chasapis, A., Matthaeus, W. H., Parashar, T. N., Fuselier, S. A., Maruca, B. A., Phan, T. D., Burch, J. L., Moore, T. E., Pollock, C. J., Gershman, D. J., Torbert, R. B., Russell, C. T., and Strangeway, R. J.: High-resolution statistics of solar wind turbulence at kinetic scales using the Magnetospheric Multiscale mission, Astrophys. J. Lett., 844, L9,
https://doi.org/10.3847/2041-8213/aa7ddd, 2017.
a
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, J. Wiley, New York, 1990. a
Frisch, U.: Turbulence. The Legacy of A. N. Kolmogorov, Cambridge
University Press, Cambrige, UK, 1995. a
Gerick, F., Saur, J., and von Papen, M.: The uncertainty of local background magnetic field orientation in anisotropic plasma turbulence, Astrophys. J., 843, 5, available at:
http://iopscience.iop.org/article/10.3847/1538-4357/aa767c/meta, 2017. a
GSFC: THEMIS mission data, available at:
http://cdaweb.gsfc.nasa.gov,
last access: 24 January 2018.
Karimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M., Sibeck, D., Tatineni, M., Majumdar, A., Loring, B., and Geveci, B.: The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas, Phys. Plasmas, 21, 062308,
https://doi.org/10.1063/1.4882875, 2014.
a
Kiyani, K. H., Chapman, S. C., Sahraoui, F., Hnat, B., Fauvarque, O., and Khotyaintsev, Y. V.: Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence, Astrophys. J., 763, 10,
https://doi.org/10.1088/0004-637X/763/1/10, 2013.
a
Lion, S., Alexandrova, O., and Zaslavsky, A.: Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence, Astrophys. J., 824, 47,
https://doi.org/10.3847/0004-637X/824/1/47, 2016.
a
Macek, W. M.: Multifractality and intermittency in the solar wind, Nonlin. Processes Geophys., 14, 695–700,
https://doi.org/10.5194/npg-14-695-2007, 2007.
a,
b,
c,
d,
e
Macek, W. M.: Multifractal turbulence in the heliosphere, in: Exploring the Solar Wind, edited by: Lazar, M., Intech, Croatia, 143–168, ISBN 978-953-51-0339-4,
https://doi.org/10.5772/37098, 2012.
a,
b
Macek, W. M. and Szczepaniak, A.: Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108,
https://doi.org/10.1029/2007GL032263, 2008.
a
Macek, W. M. and Wawrzaszek, A.: Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., 114, A03108,
https://doi.org/10.1029/2008JA013795, 2009.
a,
b,
c,
d,
e,
f,
g
Macek, W. M. and Wawrzaszek, A.: Voyager 2 observation of the multifractal spectrum in the heliosphere and the heliosheath, Nonlin. Processes Geophys., 20, 1061–1070,
https://doi.org/10.5194/npg-20-1061-2013, 2013.
a,
b
Macek, W. M., Wawrzaszek, A., and Carbone, V.: Observation of the multifractal spectrum at the termination shock by Voyager 1, Geophys. Res. Lett., 38, L19103,
https://doi.org/10.1029/2011GL049261, 2011.
a,
b,
c,
d,
e,
f
Macek, W. M., Wawrzaszek, A., and Carbone, V.: Observation of the multifractal spectrum in the heliosphere and the heliosheath by Voyager 1 and 2, J. Geophys. Res., 117, A12101,
https://doi.org/10.1029/2012JA018129, 2012.
a,
b,
c,
d,
e,
f
Macek, W. M., Wawrzaszek, A., and Burlaga, L. F.: Multifractal structures detected by Voyager 1 at the heliospheric boundaries, Astrophys. J. Lett., 793, L30,
https://doi.org/10.1088/2041-8205/793/2/L30, 2014.
a,
b,
c,
d,
e,
f
Macek, W. M., Wawrzaszek, A., and Sibeck, D. G.: THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks, J. Geophys. Res., 120, 7466–7476,
https://doi.org/10.1002/2015JA021656, 2015.
a,
b
Macek, W. M., Wawrzaszek, A., Kucharuk, B., and Sibeck, D. G.: Intermittent anisotropic turbulence dectected by THEMIS in the magnetosheath, Astrophys. J. Lett., 851, L42,
https://doi.org/10.3847/2041-8213/aa9ed4, 2017.
a,
b,
c,
d,
e
Mangeney, A., Lacombe, C., Maksimovic, M., Samsonov, A. A., Cornilleau-Wehrlin, N., Harvey, C. C., Bosqued, J.-M., and Trávníček, P.: Cluster observations in the magnetosheath – Part 1: Anisotropies of the wave vector distribution of the turbulence at electron scales, Ann. Geophys., 24, 3507–3521,
https://doi.org/10.5194/angeo-24-3507-2006, 2006.
a
Ott, E.: Chaos in Dynamical Systems, Cambridge University Press, Cambridge,
UK, 1993.
a,
b
Perri, S., Servidio, S., Vaivads, A., and Valentini, F.: Numerical
study on the validity of the Taylor hypothesis in space plasmas,
Astrophys. J. Suppl. S., 231, 4,
https://doi.org/10.3847/1538-4365/aa755a, 2017.
a
Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., Kasper, J. C., and Jovanovic, D.: Compressive coherent structures at ion scales in the slow solar wind, Astrophys. J., 826, 196,
https://doi.org/10.3847/0004-637X/826/2/196, 2016.
a
Perrone, D., Alexandrova, O., Roberts, O. W., Lion, S., Lacombe, C., Walsh, A., Maksimovic, M., and Zouganelis, I.: Coherent structures at ion scales in fast solar wind: cluster observations, Astrophys. J., 849, 49,
https://doi.org/10.3847/1538-4357/aa9022, 2017.
a
Press, W., Flannery, B., Teukolsky, S., and Vetterling, W.: Numerical
Recipes in FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press,
Cambridge, UK, 1992.
a,
b
Roberts, O. W., Li, X., Alexandrova, O., and Li, B.: Observation of an MHD Alfvén vortex in the slow solar wind, J. Geophys. Res., 121, 3870–3881,
https://doi.org/10.1002/2015JA022248, 2016.
a
Tsurutani, B. T., Echer, E., Verkhoglyadova, O. P., Lakhina, G. S., and Guarnieri, F. L.: Mirror instability upstream of the termination shock (TS) and in the heliosheath, J. Atmos. Sol.-Terr. Phy., 73, 1398–1404,
https://doi.org/10.1016/j.jastp.2010.06.007, 2011a.
a
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., Guarnieri, F. L., Narita, Y., and Constantinescu, D. O.: Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features, J. Geophys. Res., 116, A02103,
https://doi.org/10.1029/2010JA015913, 2011b.
a
Tu, C.-Y., Marsch, E., and Thieme, K. M.: Basic properties of solar wind MHD turbulence near 0.3 AU analyzed by means of Elsaesser variables, J. Geophys. Res., 94, 11739–11759,
https://doi.org/10.1029/JA094iA09p11739, 1989.
a
Vaivads, A., Retinò, A., Soucek, J., Khotyaintsev, Y. V., Valentini, F., Escoubet, C. P., Alexandrova, O., André, M., Bale, S. D., Balikhin, M., Burgess, D., Camporeale, E., Caprioli, D., Chen, C. H. K., Clacey, E., Cully, C. M., de Keyser, J., Eastwood, J. P., Fazakerley, A. N., Eriksson, S., Goldstein, M. L., Graham, D. B., Haaland, S., Hoshino, M., Ji, H., Karimabadi, H., Kucharek, H., Lavraud, B., Marcucci, F., Matthaeus, W. H., Moore, T. E., Nakamura, R., Narita, Y., Nemecek, Z., Norgren, C., Opgenoorth, H., Palmroth, M., Perrone, D., Pinçon, J.-L., Rathsman, P., Rothkaehl, H., Sahraoui, F., Servidio, S., Sorriso-Valvo, L., Vainio, R., Vörös, Z., and Wimmer-Schweingruber, R. F.: Turbulence Heating ObserveR – satellite mission proposal, J. Plasma Phys., 82, 905820501,
https://doi.org/10.1017/S0022377816000775, 2016.
a
Wawrzaszek, A. and Macek, W. M.: Observation of the multifractal spectrum in solar wind turbulence by Ulysses at high latitudes, J. Geophys. Res., 115, A07104,
https://doi.org/10.1029/2009JA015176, 2010.
a
Wawrzaszek, A., Echim, M., Macek, W. M., and Bruno, R.: Evolution of intermittency in the slow and fast solar wind beyond the ecliptic plane, Astrophys. J. Lett., 814, L19,
https://doi.org/10.1088/2041-8205/814/2/L19, 2015.
a
Yordanova, E., Vaivads, A., André, M., Buchert, S. C., and Vörös, Z.: Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft, Phys. Rev. Lett., 100, 205003,
https://doi.org/10.1103/PhysRevLett.100.205003, 2008.
a
Yordanova, E., Vörös, Z., Varsani, A., Graham, D. B., Norgren, C., Khotyaintsev, Y. V., Vaivads, A., Eriksson, E., Nakamura, R., Lindqvist, P.-A., Marklund, G., Ergun, R. E., Magnes, W., Baumjohann, W., Fischer, D., Plaschke, F., Narita, Y., Russell, C. T., Strangeway, R. J., Le Contel, O., Pollock, C., Torbert, R. B., Giles, B. J., Burch, J. L., Avanov, L. A., Dorelli, J. C., Gershman, D. J., Paterson, W. R., Lavraud, B., and Saito, Y.: Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath, Geophys. Res. Lett., 43, 5969–5978,
https://doi.org/10.1002/2016GL069191, 2016.
a