Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.558
IF1.558
IF 5-year value: 1.475
IF 5-year
1.475
CiteScore value: 2.8
CiteScore
2.8
SNIP value: 0.921
SNIP0.921
IPP value: 1.56
IPP1.56
SJR value: 0.571
SJR0.571
Scimago H <br class='widget-line-break'>index value: 55
Scimago H
index
55
h5-index value: 22
h5-index22
Volume 23, issue 4
Nonlin. Processes Geophys., 23, 215–222, 2016
https://doi.org/10.5194/npg-23-215-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 23, 215–222, 2016
https://doi.org/10.5194/npg-23-215-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Aug 2016

Research article | 02 Aug 2016

Spectral characteristics of high-latitude raw 40 MHz cosmic noise signals

Chris M. Hall

Related authors

Climatology of the mesopause relative density using a global distribution of meteor radars
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019,https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Neutral atmosphere temperature trends and variability at 90 km, 70 °N, 19 °E, 2003–2014
Silje Eriksen Holmen, Chris M. Hall, and Masaki Tsutsumi
Atmos. Chem. Phys., 16, 7853–7866, https://doi.org/10.5194/acp-16-7853-2016,https://doi.org/10.5194/acp-16-7853-2016, 2016
Short summary
Change in turbopause altitude at 52 and 70° N
Chris M. Hall, Silje E. Holmen, Chris E. Meek, Alan H. Manson, and Satonori Nozawa
Atmos. Chem. Phys., 16, 2299–2308, https://doi.org/10.5194/acp-16-2299-2016,https://doi.org/10.5194/acp-16-2299-2016, 2016
Short summary
A case study on generation mechanisms of a sporadic sodium layer above Tromsø (69.6° N) during a night of high auroral activity
T. Takahashi, S. Nozawa, T. T. Tsuda, Y. Ogawa, N. Saito, T. Hidemori, T. D. Kawahara, C. Hall, H. Fujiwara, N. Matuura, A. Brekke, M. Tsutsumi, S. Wada, T. Kawabata, S. Oyama, and R. Fujii
Ann. Geophys., 33, 941–953, https://doi.org/10.5194/angeo-33-941-2015,https://doi.org/10.5194/angeo-33-941-2015, 2015
Complexity signatures in the geomagnetic H component recorded by the Tromsø magnetometer (70° N, 19° E) over the last quarter of a century
C. M. Hall
Nonlin. Processes Geophys., 21, 1051–1058, https://doi.org/10.5194/npg-21-1051-2014,https://doi.org/10.5194/npg-21-1051-2014, 2014

Related subject area

Subject: Time Series, Complex Networks, Stochastic Processes, Extreme Events | Topic: Ionosphere, Magnetosphere, Planetary Science, Solar Science
Nonlinear vortex solution for perturbations in the Earth's ionosphere
Miroslava Vukcevic and Luka Č. Popović
Nonlin. Processes Geophys., 27, 295–306, https://doi.org/10.5194/npg-27-295-2020,https://doi.org/10.5194/npg-27-295-2020, 2020
Short summary
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020,https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Complex network description of the ionosphere
Shikun Lu, Hao Zhang, Xihai Li, Yihong Li, Chao Niu, Xiaoyun Yang, and Daizhi Liu
Nonlin. Processes Geophys., 25, 233–240, https://doi.org/10.5194/npg-25-233-2018,https://doi.org/10.5194/npg-25-233-2018, 2018
Evolution of fractality in space plasmas of interest to geomagnetic activity
Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone
Nonlin. Processes Geophys., 25, 207–216, https://doi.org/10.5194/npg-25-207-2018,https://doi.org/10.5194/npg-25-207-2018, 2018
Short summary
Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms
Gurbax S. Lakhina and Bruce T. Tsurutani
Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017,https://doi.org/10.5194/npg-24-745-2017, 2017
Short summary

Cited articles

Balasis, G., Daglis, I. A., Kapiris, P., Mandea, M., Vassiliadis, D., and Eftaxias, K.: From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys., 24, 3557–3567, https://doi.org/10.5194/angeo-24-3557-2006, 2006.
Behera, J. K., Sinha, A. K., Singh A. K., Rawat, R., Vichare, G., Dhar, A., Pathan, B. M., Nair, K. U., Selvaraj, C., and Elango, P.: First results from imaging riometer installed at Indian Antarctic station Maitri, J. Earth Syst. Sci., 123, 593–602, 2014.
Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A.: Graphical Methods for Data Analysis, 395 pp., Duxbury Press, Boston, Massachusetts, 1963.
Canal, C. A. G., Hojvat, C., and Tarutina, T.: Scaler mode of the Auger Observatory and sunspots, Astrophys. J. Suppl., 202, 16–22, https://doi.org/10.1088/0067-0049/202/2/16, 2012.
Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., and Ninot, G.: Fractal analyses for `short' time series: A re-assessment of classical methods, J. Math. Psychol., 50, 525–544, 2006.
Publications Copernicus
Download
Short summary
The relative ionospheric opacity meter ("riometer") is a traditional instrument for measuring the degree to which cosmic noise is absorbed by the ionosphere and therefore how energetic the particles – electrons, protons etc. – are that cause the ionisation. We identify the same signatures in the "hour-to-days" timescale variability as reported in solar and geomagnetic disturbances. The result demonstrates the relationship between riometer data and the underlying physics for different timescales.
The relative ionospheric opacity meter ("riometer") is a traditional instrument for measuring...
Citation