Articles | Volume 21, issue 4
https://doi.org/10.5194/npg-21-797-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.Can irregularities of solar proxies help understand quasi-biennial solar variations?
Related authors
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Ionosphere, magnetosphere, planetary science, solar science
Quantification of magnetosphere–ionosphere coupling timescales using mutual information: response of terrestrial radio emissions and ionospheric–magnetospheric currents
Nonlinear vortex solution for perturbations in the Earth's ionosphere
The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are
Evolution of fractality in space plasmas of interest to geomagnetic activity
Nonlin. Processes Geophys., 31, 195–206,
2024Nonlin. Processes Geophys., 27, 295–306,
2020Nonlin. Processes Geophys., 27, 75–119,
2020Nonlin. Processes Geophys., 25, 207–216,
2018Cited articles
Bartels, J.: Twenty-Seven Day Recurrences in Terrestrial-Magnetic and Solar Activity, 1923–1933, Terr. Magnet. Atmos. Elect., 39, 201–202, 1934.
Bergé, P., Pomeau, Y., and Vidal, C.: L'Ordre dans le Chaos, Hermann, Paris, France, 353 pp., 1984.
Bershadskii, A.: New dynamics of the Sun convection zone and global warming, arXiv:0805.2108v1 [astro-ph.SR], 2008.
Bershadskii, A.: Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity, arXiv:0908.4008v4 [astro-ph.SR], 2009.
Blanter, E. M., Shnirman, M. G., and Le Mouël, J.-L.: Solar variability: Evolution of correlation properties, J. Atmos. Solar-Terr. Phys. 67, 521–534, 2005.