Articles | Volume 20, issue 5
https://doi.org/10.5194/npg-20-841-2013
https://doi.org/10.5194/npg-20-841-2013
Research article
 | 
29 Oct 2013
Research article |  | 29 Oct 2013

Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface – Part 2: Wind–wave spectra

Yu. I. Troitskaya, E. V. Ezhova, D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. I. Vdovin, and S. S. Zilitinkevich

Abstract. Drag and mass exchange coefficients are calculated within a self-consistent problem for the wave-induced air perturbations and mean velocity and density fields using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. This second part of the report is devoted to specification of the model elements: turbulent transfer coefficients and wave number-frequency spectra. It is shown that the theory agrees with laboratory and field experimental data well when turbulent mass and momentum transfer coefficients do not depend on the wave parameters. Among several model spectra better agreement of the theoretically calculated drag coefficients with TOGA (Tropical Ocean Global Atmosphere) COARE (Coupled Ocean–Atmosphere Response Experiment) data is achieved for the Hwang spectrum (Hwang, 2005) with the high frequency part completed by the Romeiser spectrum (Romeiser et al., 1997).