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Abstract. Drag and mass exchange coefficients are calcu-
lated within a self-consistent problem for the wave-induced
air perturbations and mean velocity and density fields us-
ing a quasi-linear model based on the Reynolds equations
with down-gradient turbulence closure. This second part
of the report is devoted to specification of the model el-
ements: turbulent transfer coefficients and wave number-
frequency spectra. It is shown that the theory agrees with
laboratory and field experimental data well when turbulent
mass and momentum transfer coefficients do not depend on
the wave parameters. Among several model spectra better
agreement of the theoretically calculated drag coefficients
with TOGA (Tropical Ocean Global Atmosphere) COARE
(Coupled Ocean–Atmosphere Response Experiment) data is
achieved for the Hwang spectrum (Hwang, 2005) with the
high frequency part completed by the Romeiser spectrum
(Romeiser et al., 1997).

1 Introduction

The most important characteristics that determine interac-
tion between atmosphere and ocean are fluxes of momentum,
heat and moisture. In numerical weather and climate models
they are parameterized through the dimensionless exchange
coefficients (like surface drag coefficientCD, sensible heat

transfer coefficient or the Stanton numberCh and moisture
exchange coefficient or the Dalton numberCe). Note that
heat and moisture transfer coefficients are usually consid-
ered equal (see, e.g., Fairall et al., 2003). Thus, it is pos-
sible to describe the effects of marine atmospheric bound-
ary layer (hereafter referred to as MABL) stratification using
one equation for the air density allowing for both heat and
moisture contributions. Below we will use the mass exchange
coefficientCρ = Ch = Ce for parameterization of the turbu-
lent mass flux due to heat and moisture fluxes. Dependencies
of the drag coefficient on wind speed and wave parameters
were investigated in numerous field and laboratory experi-
ments and a number of theoretical and numerical models of
the wind–wave coupling were developed (see, e.g., Makin et
al., 1995 and references therein). It was shown thatCD in-
creases with wind speed due to increase of the form drag of
surface waves, caused by broadening of their spectrum. For
the mass transfer coefficientCρ the similar dependencies are
much less studied. In particular, a role of the wave distur-
bances induced in the airflow by the surface waves in mass
transfer is not quite understood. Observations and laboratory
data show that the dependence ofCρ on wind speed is weaker
than forCD, and there are differences in the character of the
dependence in different data sets. For example, the algorithm
COARE 3.0 (Fairall et al., 2003) indicates a slight increase
in Cρ with increasing wind speedU10. A similar dependence
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was reported by Brut et al. (2005) and in the laboratory ex-
periments by Ocampo-Torres et al. (1994), but the depen-
dence ofCρ on the wind speed was not found by Drennan
et al. (2007). The weak dependence of theCρ on U10 was
confirmed in the theoretical models by Makin and Masten-
broek (1996), but the character of the dependence (increasing
or decreasing) was sensitive to the choice of model.

This is the second paper of a two-part report aimed at
investigating the effect of surface waves on the mass ex-
change in MABL. The formulation of the problem is very
similar to the approach by Makin and Mastenbroek (1996)
and the main difference is in the model of MABL used. Prin-
ciple equations of the model are presented in the first part
(Troitskaya et al., 2013), hereafter referred to as Part 1. It
is a self-consistent quasi-linear model of MABL based on
the Reynolds equations with down-gradient turbulence clo-
sure, which extents to the case of a stratified MABL, the
model developed for the case of homogeneous atmosphere
by Reutov and Troitskaya (1996) and Troitskaya and Ry-
bushkina (2008). The expressions for the turbulent transfer
coefficients are selected based on comparison with avail-
able experimental data and the results of the special experi-
ments carried out in a wind–wave flume to investigate veloc-
ity and temperature distribution in the stratified air boundary
layer above the water surface disturbed by paddle-generated
waves. Description of the wind–wave coupling within the
model is based on the solution of the coupled equations
for the disturbances induced in the airflow by the surface
waves and the equations for the mean wind flow velocity and
temperature. Within quasi-linear approximation, the wave-
induced disturbances in the airflow are described in linear ap-
proximation. The only nonlinear effect taken into account is
the wave momentum transfer from wind to waves. The quasi-
linear model for neutrally stratified MABL was recently ver-
ified by comparison with experimental results by Troitskaya
et al. (2011) and direct numerical simulation by Druzhinin et
al. (2012).

Parameters of the surface waves are an important input
to the model. In the quasi-linear approximation used, wave
number-frequency spectrum is sufficient for calculations of
momentum and mass fluxes. In the first part of this report
(Part 1), we considered an idealized case of a single har-
monic wave at the water surface propagating in the same
direction as wind. In this paper we examine waves with con-
tinuous two-dimensional wave number spectra. Sensitivity of
the calculated exchange coefficientsCD andCρ to the wind
wave spectrum used in the model is tested. Several model
spectra are considered, including Elfouhaily et al. (1997),
Apel (1994), Romeiser et al. (1997), Hwang et al. (1996),
Hwang (1997, 2005), Hwang et al. (2001a, b), and Hwang
and Wang (2004). Calculated values of exchange coefficients
are compared to the data collected in the COARE 3.0 algo-
rithm (Fairall et al., 2003).

The structure of the paper is as follows. The modification
of the basic equations of a quasi-linear model of a turbu-

lent stratified boundary layer above a wavy water surface to
the case of the two-dimensional wave spectra are presented
in Sect. 2. Section 3 contains short descriptions of wind
wave spectra used in the model. An appropriate model of the
turbulent transfer coefficient is discussed in Sect. 4, based
on comparison with the TOGA (Tropical Ocean Global At-
mosphere) COARE (Coupled Ocean–Atmosphere Response
Experiment) experimental data and data from the wind–wave
flume experiments. Sensitivity of the model to the wind wave
spectrum is discussed in Sect. 5.

2 Basic equations of a quasi-linear model of a turbulent
stratified boundary layer above a wavy water surface

The description of the air turbulent boundary layer can be ex-
tended to the case of the random water waves by the same ap-
proach as in Troitskaya and Rybushkina (2008). In this case
a random surface elevation field is presented as a Fourier–
Stieltjes integral:

ζ(r, t)=

∫
dA(k,ω)ei(kr−ωt), (1)

wherek =
(
kx,ky

)
is a two-dimensional wave vector.

In addition, for a statistically homogeneous and stationary
surface elevation field, the following expression holds:

〈dA(k,ω)dA(k1,ω1)〉 =

F(k,ω)δ(k − k1)δ(ω−ω1)dkdk1dωdω1, (2)

whereF(k,ω) is a wave number-frequency elevation spec-
trum.

As in the case of a single harmonic wave, in order to avoid
geometric nonlinearity, we introduce the curvilinear coordi-
nates (ζ1, ζ2, η) with transformation to the Cartesian coordi-
nates (x,y,z) given by the following formulas:

x = ζ1 +

∫
i cosθ ei(k(ζ1 cosθ+ζ2 sinθ)−ωt)−kη−iφdA, (3)

y = ζ2 +

∫
i sinθ ei(k(ζ1 cosθ+ζ2 sinθ)−ωt)−iφ−kηdA, (4)

z= η+

∫
ei(k(ζ1 cosθ+ζ2 sinθ)−ωt)−iφ−kηdA. (5)

Hereθ is an angle from the wind direction. In the linear ap-
proximation, coordinate surfaceη = 0 coincides with a wavy
water surface.

Similarly to Troitskaya and Rybushkina (2008), wind–
wave interaction is considered in the quasi-linear approxi-
mation; thus, different harmonics are independent. Next, one
can introduce a curvilinear reference frame for each har-
monic, following this particular wave. By means of the axes
rotation one may proceed with a reference frame, where one
axis is parallel to the wave vector. In this reference frame the
Reynolds equations contain only 2 coordinates and a stream
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function can be introduced. Derivation of the quasi-linear set
of coupled equations for the mean wave fields and harmonics
is described in detail in Troitskaya et al. (2012). Its extension
to the case of a stratified atmosphere is similar to that de-
scribed in Part 1 for the case of a single harmonic wave at the
water surface.

The solution to the Reynolds equations for 3 velocity com-
ponents(u,v,w) and densityρ is sought in the form

u= U0(η)+

∫ (
ψ1η(η)cosθ − v1(η)sinθ

)
dAei(k(ζ1 cosθ+ζ2 sinθ)−ωt)−kη−iφ, (6)

v = V0(η)+

∫ (
ψ1η(η)sinθ + v1(η)cosθ

)
dAei(k(ζ1 cosθ+ζ2 sinθ)−ωt)−kη−iφ, (7)

w = −

∫
ikψ1(η)dAe

i(k(ζ1 cosθ+ζ2 sinθ)−ωt)−kη−iφ, (8)

ρ = ρ0 (η)+

∫
ρ1(η)dAe

i(k(ζ1 cosθ+ζ2 sinθ)−ωt)−kη−iφ . (9)

Here,U0(η) andV0(η) are constituents of a mean velocity
field, andρ0 (η) is an average density profile.

The wave-induced perturbations of vorticity, stream func-
tion and density in the air satisfy the following linearized
equations:

(ψ0ηχ1 −ψ1χ0η)ik− ik
g

ρa0
ρ1

+ ika
g

ρa0

dρ0

dη
e−kη −

(
d2

dη2
− k2

)
(χ1Km)

= −2Kmηψ1k
2
− 2k2e−kη(ψ0ηKmη )η, (10)

d2ψ1

dη
− k2ψ1 = χ1 − 2ke−kηψ0ηη, (11)

(ψ0ηρ1 −ψ1ρ0η)ik =Kρ

(
d2

dη2
− k2

)
ρ1

+Kρηρ1ηk
2, (12)

(ψ0ηv1 −ψ1V̂η)ik =Km

(
d2

dη2
− k2

)
v1 +Kmηv1ηk

2. (13)

Here,ψ0η = U0(η)cosθ +V0(η)sinθ , V̂ = V0(η)cosθ −

U0(η)sinθ . In this form, Eqs. (10)–(13) coincide with
Eqs. (55)–(57) in Part 1, and all methods developed for in-
vestigation of the air turbulent boundary layer are applicable
in this case.

The boundary conditions (see Reutov, 1995) are

ψ1|η=0 = 0, ψ1η
∣∣
η=0 = 2ω,

v1|η=0 = 0, ρ1|η=0 = 0. (14)

In the equations for the mean velocity and density compo-
nents one has to account for the nonlinear terms – the wave
momentum fluxes or wave stresses and the mass fluxes. The
set of equations for mean vorticity, stream function and den-
sity is similar to Eqs. (58)–(60) in Part 1:

d

dη
(Kmχ0)=

k
[
kKmηRe(ψ1η − kψ1)e

−kη
+ 2k2e−2kηKmηψ0η

]
−

−
1

2
k

d

dη
Im

(
ψ∗

1χ1
)
+

1

2

g

ρa0
k

d

dη
Im

(
ρ1e

−kη
)

= −
dT

dη
, (15)

d2ψ0

dη2
= χ0

(
1+ k2e−2kη

)
− ke−kηReχ1, (16)

d

dη

(
Kρ

dρ0

dη

)
= −

k

2

d

dη
Im

(
ρ1ψ

∗

1

)
. (17)

The equation for the velocity component, perpendicular to
the wind direction, is

d

dη

(
Km

dV̂

dη

)
= −

k

2

d

dη
Im

[
v1ψ

∗

1

]
=

d

dη
τ⊥ (η,k,θ,ω) . (18)

In quasi-linear approximation the contribution of all sur-
face waves to the mean velocity profile is determined by
the momentum fluxes from wind to different harmonics. The
wind velocity projections on thex andy axes satisfy the fol-
lowing equations:

d

dη

(
Km

dU0

dη

)
=

d

dη

∫ (
τ‖ (η,k,θ,ω)cosθ − τ⊥ (η,k,θ,ω)sinθ

)
k2F(k,θ,ω)kdkdθdω, (19)

d

dη

(
Km

dV0

dη

)
=

d

dη

∫ (
τ|| (η,k,θ,ω)sinθ + τ⊥ (η,k,θ,ω)cosθ

)
k2F(k,θ,ω)kdkdθdω, (20)

d

dη

(
Kρ

dρ0

dη

)
=

−
d

dη

∫
k

2
Im

[
ρ1ψ

∗

1

]
F(k,θ,ω)kdkdθdω, (21)

whereη corresponds to transformation Eq. (5), τ⊥ is speci-
fied by Eq. (18), and from Eqs. (15)–(16) one easily obtains

τ|| (η,k,θ,ω)= −T − k
(
Kme

−kηRe(χ1)
)
. (22)

Equations (19)–(20) correspond to conservation of a verti-
cal flux of the two horizontal momentum projections in a tur-
bulent boundary layer. If tangential turbulent stress far from
the surface is directed tox, then a conservation law of the
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Fig. 1.Model surface wave spectra, friction velocity –(a) u∗ = 50 cms−1; (b) u∗ = 80 cm s−1, wave age�= 0.84.

mean momentum components yields

τ
(x)
turb(η)+ τ

(x)
wave(η)=u2

∗, (23)

τ
(y)
turb(η)+ τ

(y)
wave(η)=0, (24)

whereu∗ is a friction velocity,

τ
(x)
turb(η)=Km

dU0

dη
, (25)

τ (x)wave(η)= −

∫ (
τ|| (η,k,θ,ω)cosθ − τ⊥ (η,k,θ,ω)sinθ

)
k2F(k,θ,ω)kdkdθdω, (26)

τ
(y)
turb(η)=Km

dV0

dη
, (27)

τ
(y)
wave(η)= −

∫ (
τ|| (η,k,θ,ω)sinθ + τ⊥ (η,k,θ,ω)cosθ

)
k2F(k,θ,ω)kdkdθdω. (28)

If the wave spectrum is symmetrical with respect to the
wind direction, then Eq. (24) is automatically fulfilled.

Integrating of (21) with respect toη gives conservation of
the mass flux:

τρturb(η)+ τρwave(η)= ρ∗u∗ (29)

whereρ∗ is the turbulent scale of density, characterizing the
mass flux,

τρturb(η)=Kρ
dρ0

dη
;

τρwave(η)=

∫
k

2
Im

[
ρ1ψ

∗

1

]
F(k,θ,ω)kdkdθdω. (30)

Since the wave-induced momentum and the mass fluxes
decrease with the distance from the water surface, the bound-
ary conditions for the mean velocity and density then follow

from (23, 24, 29):

Km
dU0

dη

∣∣∣∣
η→∞

= u2
∗, Km

dV0

dη

∣∣∣∣
η→∞

= 0,

Kρ
dρ0

dη

∣∣∣∣
η→∞

= ρ∗u∗. (31)

The coupled systems for the wave disturbances Eqs. (10)–
(13) with the boundary conditions in Eq. (14) and for the
mean fields Eqs. (19)–(21) with the boundary conditions in
Eq. (31) were solved numerically. Vertical profiles of veloc-
ity, density and fluxes of momentum and mass were obtained
from these calculations and exchange coefficients for neu-
tral atmosphereCD10N andCρ10N (see Zeng et al., 1998, and
Part 1) were then calculated.

3 Surface elevation spectra

According to Eqs. (19)–(21), nonlinear additives to the mean
velocity and density profiles are determined by the wave
number-frequency spectrum of surface waves; hence, a spec-
trum is an important part of the model. First of all, supposing
that frequencies and wave numbers of surface waves obey
a linear dispersion relation, a wave number-frequency spec-
trum can then be written in the form

F (k,ω)= S (k)δ (ω−ω(k)) . (32)

This assumption is justified for long waves, but in the
short-wave part of a spectrum the contribution of the bound
waves, which are the harmonics of the wind waves, may
be considerable. Their dispersion relation may differ signif-
icantly from the usual linear one. However, phase velocities
of the short waves are usually smaller than wind speed; in
this case the dispersion relation for the surface perturbations
has weak influence on air–sea momentum exchange.

We investigated the sensitivity of the drag coefficient and
the mass transfer coefficient to the wave spectrum. In the
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Fig. 2.Mean square slope dependence on wind speed.

calculations several model spectra were used: Apel (1994),
Romeiser et al. (1997), Hwang et al. (1996, 2001a, b), Hwang
(1997, 2005) and Hwang and Wang (2004). They are shown
in Fig. 1 for a developed sea at wind speeds 50 and 80 cm s−1.
The expressions for these spectra are given in Appendix A.

In the calculations the upper bound of the spectrum was
20 cm−1 (corresponding to the wave length of 3.14 mm);
moreover, all the saturated model spectra decay exponen-
tially. Hence, the mean square slope is fully determined by
this spectral interval. Figure 2 shows the mean square slopes
for the different spectra as the functions of wind speed. The
same figure shows the mean square slope, which in this case
is obtained by Cox and Munk (1954) from measurements
of a sun glitter. It can be concluded that Hwang’s spectrum
(see Eq. A4), completed by Romeiser spectrum (Eq. A3)
for k > 3.16 cm−1, provides the best fit curve to Cox’s and
Munk’s. Note that these spectra are obtained from the ap-
proximations of the field measurements data, while other
model spectra are obtained from the laboratory experiments.

4 An appropriate model of the turbulent transfer
coefficients

To solve the set of Eqs. (15)–(18) and (19)–(21) numerically,
it is necessary to choose the right model of turbulent transfer
coefficients. The expressions were chosen similarly to Part 1:

Km (η)=
νaf (η/zν)

8m (η/L)
, Kρ (η)=

νafρ (η/zν)

8ρ (η/L)
. (33)

Here, νa is air molecular viscosity,zν is a viscous sub-
layer width,L is the Obukhov length scale, and8m (z/L),
8ρ (z/L) are the universal functions of dimensionless height
(we used the empirical approximations from Zeng et al.,
1998; see also Part 1). We adoptf (η/zν) obtained by
Smol’yakov (1973) for a turbulent flow over smooth plate:

f (η/zν)= 1+
κη

zν

(
1− exp

{
−

(
η

zν lm

)2
})

, (34)

wherelm = 22.4. The similar expression holds forfρ (η/zν):

fρ (η/zν)= νa

(
1

Pr
+

κη

Prtzν

(
1− exp

{
−

(
η

zν lρ

)2
}))

. (35)

Here,Pr = νa/νρ is the Prandtl number;Prt =Km/Kρ is
the turbulent Prandtl number in neutral and near-neutral strat-
ification, lρ = 31.7. For a detailed discussion see Part 1.

In the presence of surface waves, there is an ad-
ditional dimensionless function, normalized wave
momentum flux τwave(η)/u

2
∗, where τwave(η)=√(

τ
(x)
wave(η)

)2
+

(
τ
(y)
wave(η)

)2
is the magnitude and

τ
(x),(y)
wave (η) are x and y components of the wave mo-

mentum flux given by Eqs. (26) and (28). In this case
turbulent transfer coefficients may depend on this function,
i.e.,

Kmwave(η)=
νaf

(
η/zν,τwave(η)/u

2
∗

)
8m (η/L)

,

Kρwave(η)=
νafρ

(
η/zν,τwave(η)/u

2
∗

)
8ρ (η/L)

. (36)

From the calculations it follows that the wave-induced
mass flux is small; hence, it may be omitted in a pa-
rameterization of turbulent transfer. In Troitskaya and
Rybushkina (2008) the eddy viscosity dependence on
waves was accounted for as follows. Instead ofzν =

νa/u∗ the authors usedz∗ = νa/
√
τturb(η), whereτturb(η)=√(

τ
(x)
turb(η)

)2
+

(
τ
(y)
turb(η)

)2
is a magnitude of a turbulent

momentum flux; from Eqs. (23) and (24), τturb(η)= u2
∗ −

τwave(η). In this case turbulent transfer coefficients are given
by Eqs. (31)–(35), with a substitutionη/zν → η/z∗, where
η/z∗ = η∗

√
1− τwave(η)/u2

∗. A similar approximation was
used in Makin and Mastenbroek (1996) and Makin and
Kudryavtsev (1999).

Thus, we have to choose an appropriate closure model
(CM) that gives an adequate description of the exchange co-
efficients. Both of the models considered here are given by
the expressions Eqs. (33)–(35) for the eddy viscosity and the
eddy conductivity. The difference is that in the first model
(CM1), the viscous scale is determined byu∗ corresponding
to the whole momentum flux, while in the second (CM2),
u∗

√
1− τwave(η)/u2

∗ is corresponding to the turbulent mo-
mentum flux. Since these models are equivalent from the
point of view of scaling theory, only comparison with exper-
imental data allows for choosing between them. Further in
Sect. 4.1 we discuss results of the calculations ofCD andCρ
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Fig. 3.Dependencies of a drag coefficient(a) and a mass exchange coefficient(b) on wind speed.

for both CMs, which show that better agreement is achieved
with CM1. This conclusion is also confirmed on the basis of
comparison with the laboratory experiment in the wind–wave
flume. The details are described in the following subsections.

4.1 Comparison to TOGA/COARE experimental data.
Temperature and wind velocity profiles above a
wavy water surface

Wind speed dependencies ofCD10N and Cρ10N , obtained
within the framework of the two closure models, are shown
in Fig. 3. For calculations we used the modified Hwang spec-
trum (Hwang, 2005 – see Eq. A14), completed by Romeiser
spectrum (Romeiser et al., 1997), which corresponds best to
the experimental data of Cox and Munk (1954).

It can be seen from Fig. 3a that the dependenceCD10N(U10)

is weaker for CM2, and Fig. 3b shows that CM2 gives a de-
creasing dependenceCρ10N(U10). The last result contradicts
the field observations, approximated by COARE 3.0 algo-
rithm and the data from Brut et al. (2005).

In order to illustrate the difference between the two clo-
sure models, let us consider the mean velocity and density
profiles, turbulent fluxes and turbulent transfer coefficients
calculated within the models. Figure 4a–f show mean veloc-
ity (a) and density (b) profiles, turbulent momentum (c) and
mass (d) fluxes, turbulent momentum (e) and mass (f) trans-
fer coefficients in weak stable stratification and weak wind,
whenρ∗/ρ0 = 0.5/300 andu∗ = 10 cm s−1. It can be con-
cluded from Fig. 4d and e that, in the presence of waves,
CM2 gives smaller turbulent transfer coefficientsKρ and
Km than CM1. This is the consequence of the turbulent mo-
mentum flux decrease close to the surface (Fig. 4c), as this
flux characterizes the eddy viscosity within the framework of
CM2. Decrease of the turbulent tangential stress close to the
surface due to wind-to-waves momentum transfer results in
decrease of wind speed and increase of the drag as compared

to the flow above the smooth surface (see Fig. 4a). Within
the framework of CM2 this effect is weaker (compare solid
and dotted curves in Fig. 4a) due to the decrease of the eddy
viscosity.

It is interesting to notice the effect of the decreasing tur-
bulent mass flux close to the surface (see Fig. 4d) due to
the wave mass flux. This effect has already been discussed
in Part 1. It is known that the resonant interaction of waves
with stratified shear flows in the viscous and thermal-transfer
media leads to the irreversible reduction of the density gra-
dient in the region with closed streamlines – the critical lay-
ers (see, e.g., Maslowe, 1972; Haberman, 1973; Troitskaya,
1991) – which leads to a positive wave mass-fluxτρwave(η) in
Eq. (29) and to a reduction of the average density gradient. In
turn, it leads to a reduction of the density difference between
the sea surface and the reference level. This effect increases
with a decreasing coefficient of heat conductivity (see Troit-
skaya, 1991), meaning it is most pronounced in a condition
of light winds and strong stratification of the surface layer
of the atmosphere where the coefficients of turbulent mass
transfer are reduced. The consequence of the decrease of a
turbulent mass flux is the decrease of the mean density dif-
ference.

In this study the total decrease of the turbulent mass flux
does not exceed 15 %; this is a consequence of big enough
Kρ . For CM2 this effect is more significant due to lessKρ .
For CM1, the consequence of the decreasing turbulent mass
flux is the decreasing density difference. For CM2 this effect
is compensated: the density difference increases because of
the decreasing turbulent mass transfer coefficient (compare
solid and dotted curves in Fig. 4b).

Analogous dependencies for the wind friction velocity
u∗ = 50 cm s−1 are shown in Fig. 5a–f. Note that the com-
mon peculiarities of the closure models stay for stronger
winds. One of the differences is the significant reduction of
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Fig. 4. Mean velocity(a) and density(b) profiles, turbulent momentum(c) and mass(d) fluxes, normalized turbulent momentum(e) and
mass(f) transfer coefficients. Friction velocity – 10 cm s−1.

a turbulent momentum flux close to the surface in strong
wind (Fig. 5c), causing decrease of the eddy viscosity for
CM2 (Fig. 5e). Reduction of a turbulent mass flux is less
pronounced than for weak wind due to the increase of a tur-
bulent transfer coefficient with wind speed (Fig. 5d). As a
result, within the framework of CM1, density difference in
the case of waves is almost indistinguishable from the case
of the flow above the smooth surface (Fig. 5b). At the same
time, CM2 gives significant increase in density leap in the
presence of waves as compared to the flow above the smooth
surface (Fig. 5b).

The differences in the velocity and density profiles for the
two models explain the differences in the turbulent exchange
coefficients. As follows from Fig. 3a,CD10N grows faster with
U10N for CM1. This is also confirmed by the velocity pro-
files calculated for both models (Figs. 4a and 5a); CM1 gives
smallerU10N in the same conditions due to the larger eddy
viscosity. The air density difference1ρ10N between the sur-
face and the standard height 10 m within the framework of

CM1 is somewhat less than for a smooth surface due to the
influence of the wind stresses on turbulent mass transfer. This
effect, however, cannot be verified experimentally because
the reduction does not exceed 1 %. Within the framework of
CM2, density difference1ρ10N is larger due to the reduction
of the turbulent mass transfer coefficient.

As a result, CM1 gives the growing exchange coeffi-
cientCρ10N due to both increasing drag coefficient and ra-
tio ρ∗/1ρ10N (see Eq. 40 in Part 1). Within the framework
of CM2, the ratioρ∗/1ρ10N decreases with wind speed be-
cause of the effective reduction of the turbulent transfer co-
efficient for strong winds (see Figs. 4f and 5f). At the same
time, growth ofCD10N with wind speedU10N is not enough
for the compensation of the decreasingρ∗/1ρ10N. Conse-
quently,Cρ10N decreases with wind speed.

Thus, calculations within the framework of CM1 give bet-
ter qualitative agreement with experimental data (Fairall et
al., 2003; Ocampo-Torres et al., 1994; Brut et al., 2005),

www.nonlin-processes-geophys.net/20/841/2013/ Nonlin. Processes Geophys., 20, 841–856, 2013



848 Yu. I. Troitskaya et al.: Part 2: Wind–wave spectra

Fig. 5. Mean velocity(a) and density(b) profiles, turbulent momentum(c) and mass(d) fluxes, normalized turbulent momentum(e) and
mass(f) transfer coefficients. Friction velocity – 50 cm s−1. The thin and thick solid curves are indistinguishable in(b).

demonstrating the growing dependencies ofCρ10N on wind
speed.

4.2 Comparison to the experimental data from the
wind–wave flume of IAP RAS

To select the model of the turbulent exchange coefficients,
we also used data from the laboratory experiments directed
to study stratified turbulent boundary layer above the water
surface. The experiments investigated the effects of surface
waves on turbulent momentum and mass transfer in a strat-
ified boundary layer. The experimental setup (Fig. 6) was
designed at the wind–wave Large Thermally Stratified Tank
(LTST) of IAP RAS (for detailed description of this experi-
ment flume facility see Troitskaya et al., 2012).

Temperature and wind speed at the channel entrance were
controlled using a hot-film anemometer. The accuracy of the
measurements was within 0.02◦C for temperature and within

10 cm s−1 for velocity in the whole range of wind speeds in
the experiment.

To measure characteristics of the airflow in the work sec-
tion (at 7 m distance from the entrance), we used a pneu-
mometric Pitot tube (connected to the differential pres-
sure gauge MKS Baratron 226 AD) along with a hot-film
anemometer similar to the one described above. They were
jointed and positioned at the scanning system. Both sensors
had the same diameter and the sensing head of the anemome-
ter was at the same height as the inlet of the Pitot tube. This
scheme provided measurements of temperature and veloc-
ity on the same level. The hot-film anemometer was placed
behind the Pitot tube and was used for temperature measure-
ments only. We carried out a test series of experiments, which
showed no interference of the sensors on their experimental
data. The difference between data from measurements for the
cases of separate and combined use of the sensors did not ex-
ceed their error range. The accuracy of velocity measurement
by Pitot tube is 5 cm s−1 in the whole range of wind speeds.
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Fig. 6.Experimental setup in the wind–wave LTST of IAP RAS. The sizes are in cm. (1) Wind–wave channel body, (2) wind–wave bearings,
(3) convergent – diffusion section with a honeycomb, (4) hot-film anemometer at the entrance, (5) a net along the channel installed on the
different depths, (6) wave absorber, (7) Pitot tube on a scanning system, (8) anemometer, (9) three-channel wire wave-gauge, (10) a sensor
for water temperature measurements.

The scanning began from different heights of water level, de-
pending on the parameters of surface waves. The minimum
height was 10 mm from the undisturbed water surface. The
data accusation time for each horizon was 1 min. The veloc-
ity and temperature profiles were measured twice during the
experiment.

To regulate wave amplitude independently of the wind,
a polyethylene net with a filament width of 0.25 mm and a
mesh size 1.6× 1.6 mm was put under water at 3 mm depth
from the undisturbed water level along the whole channel.
To provide the uniform tension and the same depth along the
channel we used the underwater wire (3 mm diameter) brack-
ets put at a distance of 1 m from each other. The deviation
of the net location by depth was within 1.5 mm. The net pro-
vided the effective attenuation of surface waves dependent on
its depth in the whole range of wind speeds, including strong
winds (up to 17 m s−1 or equivalent 30 m s−1 for the refer-
ence level 10 m). We did not perform experiments for higher
wind speeds because of the spray dropping on the anemome-
ters.

A water temperature sensor was put near a wave gauge. It
was placed at the same depth of 2.5 cm from the undisturbed
water level for all experiments with the net. When the net
was not used, the depth of a sensor location increased with
increasing wind speed to provide 3 cm depth from the mean
level of waves’ troughs in the working section. The accuracy
of this sensor was 0.05◦C.

Stable air stratification near the water surface was pro-
vided by the temperature difference between water and air.
Average water temperature during the whole experimental
series was 14.8◦C. The deviation from this value was within
0.2◦C due to the large reservoir of the LTST. Mean air tem-

perature at the entrance of the channel was 22.9◦C, but var-
ied significantly (the deviation was 0.8◦C) for two reasons.
First, air temperature at the LTST entrance depends on the
speed of fan rotation. Second, the temperature in the lab
changes from day to day in spite of the special climate sys-
tems. Thus, the experimental data were scaled by the en-
trance temperatures.

The experiments were performed for 2 different wind
speeds with and without a net. The wind speeds at the axis
of the LTST in the working section were 13.9 m s−1 and
16.5 m s−1.

It is clearly seen from Fig. 7 that wind velocity profiles are
significantly different for the cases with and without a net. In
contrast to the velocity profiles, the temperature profiles are
almost independent of the wave amplitudes determined by
the net position. This corresponds to CM1: the form of the
wave surface does not influence the mass fluxes. This result
allows choosing the model CM1 with the wave-independent
turbulent transfer coefficients for further analysis.

4.3 Sensitivity of the model to the wave spectrum

One of the most important constituents of the model is the
surface wave spectrum when determining the wave momen-
tum and the mass fluxes (see Eqs.19–21). According to
Hwang (2005), waves with the wave lengths from centime-
ters to 1 m are the ones that contribute the most to surface
roughness. Indeed, let us consider the contributions to sur-
face roughness of wave perturbations induced by the separate
wave harmonics for the different model spectra. The wind
speed profile over a wavy water surface can be represented
as a superposition of the logarithmic velocity profile over a
smooth surface and the constant negative additive (see, e.g.,
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Fig. 7. Wind velocity (a) and (c) and temperature(b) and (d) vertical profiles measured for wind speeds on the axis of the LTST in the
working section: 13.9 m s−1 (a, b), 16.5 m s−1 (c, d).

Eq. 25 from Part 1). The contribution of the separate wave
harmonics to this additive is shown in Fig. 8a and b:

1u(k)=

k∫
kp

π∫
−π

kdkdθ

∞∫
0

τ̂wave(z,k,θ)

Km (z)
dz, (37)

where τ̂wave(z,k,θ) is a wave-induced momentum flux in
the air, corresponding to the harmonic wave with wave num-
berk, propagating at the angleθ to the wind direction. The
expression forτ̂wave(z,k,θ) is given by the integrand in
Eq. (19) while the formulas for surface spectra are specified
in Appendix A.

Figure 8a and b differ by the value ofu∗, which is equal to
50 cm s−1 in Fig. 8a and to 80 cm s−1 in Fig. 8b. The differ-
ence in “roughness structure” for the different spectra can be
seen from these figures. In particular, Apel spectrum (Apel,
1994) causes underestimation of the harmonics with long

wave lengths, and overestimation of the high frequency con-
stituents. For the Hwang’s spectrum (Hwang, 2005) (see Ap-
pendix A), completed by the Romeiser spectrum (Romeiser
et al., 1997) (Eq. A3), 97 % of the sea roughness corresponds
to the harmonics with wave numbers less than 4 cm−1.

The coefficients of momentum and mass exchange were
calculated within the quasi-linear model according to their
definitions.

CD10N =
u2

∗

U2
10N

; Cρ10N =
ρ∗u∗

1ρ10NU10N
. (38)

DependenciesCD10N(U10N) andCρ10N(U10N), calculated
within the framework of the quasi-linear model, are shown in
Fig. 9a and b, respectively. Calculations were performed for
a developed sea (�= U10/c = 0.84) with near-neutral strat-
ification, and the turbulent Prandtl number was 0.85, in ac-
cordance with Monin and Yaglom (1992). These parameters
were chosen for comparison with the available experimental
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Fig. 8.Harmonics’ contributions to the wave momentum flux on the surface foru∗ = 50 cm s−1 (a) andu∗ = 80 cm s−1 (b).

data. We used TOGA/COARE 3.0 approximations of depen-
denciesCD10N(U10N) andCρ10N(U10N) published in Fairall et
al. (2003).

For quantitative comparison of calculations with experi-
mental data we found relative errors of the modelεD andερ
using the following formulas:

εD,ρ =

 1

N

N∑
n=1

(
Ccalc

D,ρ10N −Ccoare
D,ρ10N

)2

(
Ccoare

D,ρ10N

)2


1/2

, (39)

where index (calc) indicates calculations data, and index
(coare) correspond to TOGA/COARE 3.0 data (Fairall et
al., 2003). The estimates of the relative errors are shown
in Table 1 for wind speedsU10N less than 14 m s−1 and
18 m s−1 for comparison. It can be seen from Table 1 that bet-
ter agreement with TOGA/COARE 3.0 data is achieved for
Hwang–Romeiser, Romeiser and Apel spectra (error about
10 % forCD10N and less than 10 % forCρ10N). The Elfouhaily
spectrum gives values ofCD10N underestimated by about
30 %. However, only Hwang–Romeiser’s and Elfouhaily
spectra are in agreement with Cox and Munk (1954) data,
but both Romeiser’s and Apel’s spectra significantly over-
estimate mean square slope in comparison with Cox and
Munk (1954).

At the same time it can be seen from Fig. 9a that for all
spectra the model is in good agreement with the experimental
data for wind speedU10N< 10 m s−1. For higher winds the
model underestimates dependenciesCD10N on wind speed in
comparison with the data by Fairall et al. (2003). Given the
high sensitivity of the surface drag coefficient to the “struc-
ture” of the roughness described by the spectrum of the sur-
face waves, it can be assumed that these differences are due
to inaccuracies in the determination of the wind–wave spec-
tra. Indeed, as shown in Fig. 8, the short waves make the
main contribution to surface roughness. At the same time,

measurement of short waves is a very difficult problem, es-
pecially at high wind speeds. Thus, the experimental data
for the Hwang–Romeiser spectrum were obtained at wind
speeds below 14 m s−1. At higher wind speeds, these model
spectra are used formally but without any experimental con-
firmation.

Figure 9b shows the coefficient of mass exchange via the
wind speed. The difference in the values calculated within the
different models is quite significant, but it does not exceed
experimental errors. The best agreement is achieved with cal-
culations using the Hwang–Romeiser spectrum. The depen-
dence ofCρ10N(U10N) is slower thanCD10N(U10N). This is
easy to explain, using the definitions in Eq. (38), from which
we find that

Cρ10N =
ρ∗u∗

1ρ10NU10N
=

ρ∗

1ρ10

√
CD10N. (40)

The calculations within the framework of CM1 showed
that the profile of the average density is practically indepen-
dent of the waves at the water surface, which means that one
can use the following for1ρ10(η) expression for the case of
smooth surface:

1ρ10 =
ρ∗

κPrt
ln
η

zρ0
, (41)

and the roughness parameter for the densityzρ0 =
αν
u∗
, where

α = 0.177, according to Liu et al. (1979).
As a result, we have for the mass exchange coefficient

Cρ10N =
√
CD10N

κPrt

ln H10u∗

αν

=
√
CD10N

κPrt

ln
H10U10

√
CD10N

αν

. (42)

The numerator and denominator are the increasing func-
tions ofU10N, but the result of their balance is a slightly in-
creasing functionCρ10N(U10N).
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Fig. 9. Drag coefficient(a) and mass exchange coefficient(b) as functions of wind speed for different spectra. Thin solid curve corresponds
to the flow above the smooth surface.

Table 1.Relative errors of coefficientsCD10N andCρ10N, calculated within the framework of the model with different empirical wave spectra.

Elfouhaily spectrum, Apel spectrum, Romeiser spectrum, Hwang–Romeiser spectrum,
formulas (A1)–(A3) formulas (A4)–(A7) formulas (A8)–(A13) formulas (A14)–(A18)

εD,
U10< 18 m s−1

0.27 0.10 0.11 0.12

ερ ,
U10< 18 m s−1

0.25 0.07 0.08 0.03

εD,

U10< 14 m s−1
0.17 0.06 0.10 0.11

ερ ,

U10< 14 m s−1
0.04 0.07 0.09 0.04

5 Conclusions

The question regarding the influence of the surface waves on
air–sea momentum and mass exchange is one of the most
important problems in theory of surface waves and MABL
and its applications. A role of surface waves in formation
of a sea surface drag is well established. In particular, it has
been found that a drag coefficient is an increasing function
of wind speed due to the wave spectrum expansion. To date,
large amounts of experimental data on aerodynamic sea sur-
face drag have been accumulated (Fairall et al., 2003; Brut et
al., 2005; Zeng et al., 1998) that can be used for verification
of the theoretical models of MABL above a wavy water sur-
face. Dependence of mass exchange coefficientCρ on wind
speed is much less explored. The experiments (Fairall et al.,
2003; Ocampo-Torres et al., 1994; Brut et al., 2005; Dren-
nan et al., 2007) show that this dependence is weaker than
for CD; however, statistically significant weak growth of heat
and moisture exchange coefficients with wind speed has been
proved (Fairall et al., 2003; Ocampo-Torres et al., 1994; Brut
et al., 2005).

In the present work we suggest a self-consistent model
of stratified turbulent boundary layer over waved water sur-
face. The model is based on the system of Reynolds-averaged
Navier–Stokes equations in the basic formulation with the
first-order closure hypothesis, where coefficients of turbulent
transport were verified experimentally. Comparisons with the
experimental data enabled us to choose the eddy viscosity
and heat conductivity coefficients scaled by the total tangen-
tial stress in the boundary layer. Wind–wave momentum and
mass exchange within the model is considered in the quasi-
linear approximation. This approach, when the linear approx-
imation is prescribed for the wave-induced disturbances and
nonlinear effects are concerned only with the mean flow, is
often used in plasma physics. For the wind–wave interaction
with homogeneous MABL, it was applied by Janssen, 1991;
Fabricant, 1976; Jenkins, 1992; and Reutov and Troitskaya,
1996. Wave momentum and mass fluxes in this approach are
calculated from the solution of the boundary problem for
coupled systems of the wave-induced disturbances and mean
fields.

As nonlinear corrections to mean wind speed and den-
sity profiles are determined by a wave number-frequency
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spectrum, it is an important element of the model. In the
present model for calculation of drag and mass exchange co-
efficients, we used several model spectra, describing wave
parameters within the interval from millimeters to some hun-
dred meters wave lengths (Elfouhaily et al., 1997; Apel,
1994; Romeiser et al., 1997; Hwang et al., 1996, 2001a, b;
Hwang, 1997, 2005; Hwang and Wang, 2004). It was shown
that the main contribution to the resistance of the surface is
made by the waves with wave lengths from meters to cen-
timeters. The best agreement of theoretically calculated drag
coefficient with TOGA/COARE (Fairall et al., 2003) data is
achieved for the Hwang spectrum (Hwang, 2005), where the
high-frequency part is completed by the Romeiser spectrum
(Romeiser et al., 1997). At the moment it is the only model
of the wind–wave spectrum where the short wave part (from
6 m to 4 cm) is based on field data. Other spectra use data
from laboratory experiments, which can significantly differ
from field data (see, e.g., Hwang et al., 1996). The additional
advantage of this spectrum is agreement of a calculated mean
square slope with data from Cox and Munk (1954). The data
are in good agreement with the experiment at wind speeds up
to about 10 m s−1; at higher winds the model underestimates
CD10N by about 10 %. A possible explanation is the incor-
rect extension of the short wave spectra to the case of strong
winds.

Calculations within the model showed that the coeffi-
cient of mass exchangeCρ10N(U10N) increased with the wind
speed, although the growth is slower than for the momentum
exchange coefficientCD10N(U10N). According to its defini-
tion, Cρ10N(U10N) is a dimensionless number that measures
the ratio of mass transferred from the air to water to wind
speed and density differences between air and water. Note
that according to the model the density profile in MABL is
practically independent of waves. Also, the mass exchange
coefficient is determined by balance between reduction of
mass transfer in viscous sublayer due to decrease of the den-
sity roughness parameter and increase of the momentum ex-
change coefficient with wind speed. There is only an indi-
rect effect of wave disturbances on the mass transfer in this
case, which is associated with an increase in the coefficient
of momentum exchange with increasing wind speed – which
in turn is due to the transfer pulse waves.

Appendix A

Model spectra of short wind waves

A1 Elfouhaily spectrum

Surface elevation spectrum can be represented as a sum
of two items Self = (Bl +Bh)Delf (φ)/k

3, long wave and
short wave; for each component, parameterization of sat-
uration spectraBl and Bh is suggested. For a long wave
part of the saturation spectrum, the Donelan–Pierson formula

(Donelan and Pierson, 1987) is suggested (see Elfouhaily et
al., 1997):

Bl =
0.006
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, (A1)

where�=
U10

√
kp

√
g

is wave age. For a short wave part of the
saturation spectrum, Elfouhaily et al. (1997) use the follow-
ing formula:

Bh =
10−2
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1+ 3ln

u∗

c

) u∗

c
e
−

1
4
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2g(
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)2 . (A2)

The following approximation (see Elfouhaily et al., 1997)
is used as an angle distribution of elevation spectrum:

D(φ)=
1

π
(1+ δ cos(2φ)), where (A3)

δ = atan

[
log(2.0)

4
+ 4

(
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+ 0.13
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23

( c
23

)−2.5
]
.

A2 Apel spectrum

This spectrum can be represented as a product of Donelan–
Pierson spectrum (Donelan and Pierson, 1987):

Sapel= SlWDapel(φ), (A4)
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Angle distribution of wave spectral density in Apel spectrum (Apel, 1994) is a Gaussian 11 

function: 12 

( )
1.3

2
exp 4 0.14 5apel

p

k
D

k
ϕ ϕ

−  
 = − +     

                                                                 (A7) 13 

 14 

A3  Modified Apel spectrum, suggested by Romeiser et al. (1997) 15 

This spectrum is a modified Apel spectrum (Apel, 1994) allowing for data on scattering cross-16 

section of radio waves with wavelengthes from dm to mm. Spectral density of surface 17 

elevation is given by the following expression: 18 

( ) ( )10

k

r L h r

k

U
S P W k D

u

β

ϕ
 

=  
 

,                                                                               (A8) 19 

where 20 

er = exp

−
1

0.32

(√
k

kp
− 1

)2
 , (A5)

multiplied by the sum of a low frequency filter with a cut-
off wave numberk0 = 1 cm−1 and a band-pass filter in the
vicinity of a wave numberk1 = 4 cm−1.
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Here, k2 = 4.5 cm−1, k3 = 62.83 cm−1, and a = 80 cm,
U0 = 4.7 m s−1.

Angle distribution of wave spectral density in the Apel
spectrum (Apel, 1994) is a Gaussian function:

Dapel(φ)= exp

(
−4φ2

(
0.14+ 5

k

kp

)−1.3
)
. (A7)
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Table A1. Polynomial coefficients forA0 anda0 in Eq. (A16).

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

−5.62 −1.03 2.20 6.76 8.47 6.05 2.64 0.717 0.117 0.0106 0.000403

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1.39 0.736 0.516 1.07 1.48 1.20 0.585 0.174 0.0308 0.00296 0.000119

A3 Modified Apel spectrum, suggested by Romeiser et
al. (1997)

This spectrum is a modified Apel spectrum (Apel, 1994) al-
lowing for data on the scattering cross-section of radio waves
with wave lengths from dm to mm. Spectral density of sur-
face elevation is given by the following expression:
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Numeric parameters, included in Eqs. (A10)–(A11), are
the following:
k1 = 1.83 cm−1, k2 = 33.33 cm−1, k3 = 0.33 cm−1,

k4 = 1.4 cm−1, k5 = 2.2 cm−1, k6 = 2.8 cm−1,
k7 = 0.75 cm−1, k8 = 13 cm−1, k9 = 88.85 cm−1,

uk = 1 m s−1.
Angle distribution of spectral density of surface elevation

is formulated as

Dr (φ)= exp
(
−φ2dφ

)
, (A12)

where
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in whichωn = 400 s−1, kn = 10−2 cm−1.

A4 Hwang spectrum

In the papers by Hwang et al. (1996, 2001a, b), Hwang (1997,
2005) and Hwang and Wang (2004), the following expres-
sion for the surface elevation spectrum is suggested:

Sh =
A0 (k)

k3

(u∗

c

)a0(k)

Dh (φ), (A14)

where angle distribution is

Dh (φ)=
1

π

[
1+

N∑
n=1

An (k)cos(2nφ)

]
. (A15)

CoefficientsCn are given in Hwang et al. (2001b) as poly-
nomials ofk; for k > 2kp the angle distribution becomes bi-
modal.

Note that this spectrum is special as it is obtained from the
approximation of field observations data, including cm wave
lengths. This is not the case for other spectra (Elfouhaily et
al., 1997; Apel, 1994; Romeiser et al., 1997), that are based
on the data of laboratory experiments. At the same time, ac-
cording to Hwang et al. (1996), there are significant discrep-
ancies between field and laboratory data, in particular, depen-
dencies of saturated spectral densities on wind speed are dif-
ferent for cm and dm wave lengths. For instance, the growth
of a high-frequency part of a spectrum with wind speed is
slower in field conditions compared to laboratory conditions
(Hwang et al., 1996, 2001a, b; Hwang, 1997, 2005; Hwang
and Wang, 2004). Also, Hwang spectrum has a bimodal an-
gle distribution of spectral density, unlike to Elfouhaily et
al. (1997), Apel (1994) and Romeiser et al. (1997).

According to Hwang (2005), fork < 1 m−1 coefficients
A0 = 0.0526 anda0 = 1 in formula (A14); for 1 m−1 < k <

3.1623 cm−1 they are given in tables. For convenience of
calculations, we suggest approximations of these curves by
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polynomials of the 10th order:

A0 = exp

[
10∑
n=0

Cn log

(
k

k0

)n]
;a0 =

10∑
n=0

cn log

(
k

k0

)n
,

k0 = 3.1623 cm−1, (A16)

being in very good agreement with the curves in
Hwang (2005). Coefficients of the polynomials are given in
Table A1. Fork > 3.1623 cm−1 we completed the spectrum
of Hwang (2005) by spectrum of Romeiser et al. (1997), de-
scribed earlier.

Note that polynomial approximations in angle distribution
(coefficientsAn in Eq. A15) are justified only for the long
wave part of the spectrum, fork/kp < 9. In the present work
we used the following model of angle spectrum distribution:

Dh (φ)=


1
π

[
1+

N∑
n=1

An (k)cos(2nφ)

]
;k < 9kp,

1
π

[
1+

N∑
n=1

An
(
9kp

)
cos(2nφ)

]
;9kp < k < 1m−1.

(A17)

For k > 1 m−1 we used angle distribution (A12), sug-
gested in Romeiser et al. (1997), with a necessary normal-
ization:

Dhl (φ)= exp
(
−φ2dφ

)√ π

dφ
. (A18)

The disadvantage of this representation is a sudden change
of angle spectrum distribution fork = 1 m−1. At the same
time, in the model developed here the spectrum is integrated
by wave numbers, making the model insensitive to such
changes in integrands.
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