Articles | Volume 20, issue 3
https://doi.org/10.5194/npg-20-305-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-20-305-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Brief communication "Spatial and temporal variation of wind power at hub height over Europe"
S. Gisinger
Institute for Meteorology and Geophysics, University of Innsbruck, Austria
G. J. Mayr
Institute for Meteorology and Geophysics, University of Innsbruck, Austria
J. W. Messner
Institute for Meteorology and Geophysics, University of Innsbruck, Austria
R. Stauffer
Institute for Meteorology and Geophysics, University of Innsbruck, Austria
Related authors
No articles found.
Fiona Fix, Georg Johann Mayr, Achim Zeileis, Isabell Kathrin Stucke, and Reto Stauffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2143, https://doi.org/10.5194/egusphere-2024-2143, 2024
Short summary
Short summary
“Atmospheric deserts” (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms, and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow the AD directly from North Africa to Europe for a case in June 2022, allowing us to analyze the air mass at any time and investigate how it is modified along the way.
Gregor Ehrensperger, Thorsten Simon, Georg Johann Mayr, and Tobias Hell
EGUsphere, https://doi.org/10.48550/arXiv.2210.11529, https://doi.org/10.48550/arXiv.2210.11529, 2024
Short summary
Short summary
Lightning can cause significant damages to infrastructure and pose risks to individuals. As lightning is a short and local event it is not explicitly resolved in atmospheric models. Instead, auxiliary descriptions based on meteorological expert knowledge are used to assess lightning. We used AI that successfully discovered on its own the ingredients that experts know to be essential for lightning in the well-studied region of the Alps. Additionally, it also recognized regional differences.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020, https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Short summary
State-of-the-art statistical methods are applied to postprocess an ensemble of numerical forecasts for vertical profiles of air temperature. These profiles are important tools in weather forecasting as they show the stratification and the static stability of the atmosphere. Flexible regression models combined with the multi-dimensionality of the data lead to better calibration and representation of uncertainty of the vertical profiles.
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020, https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Short summary
This study presents airborne measurements in shallow convection over land to investigate the dynamic properties of clouds focusing on possible narrow downdraughts in the surrounding of the clouds. A characteristic narrow downdraught region (
subsiding shell) is found directly outside the cloud borders for the mean vertical wind distribution. The
subsiding shellresults from the distribution of the highly variable updraughts and downdraughts in the near vicinity of the cloud.
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019, https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary
Short summary
Accurate wind forecasts are of great importance for decision-making processes in today's society. This work presents a novel probabilistic post-processing method for wind vector forecasts employing a bivariate Gaussian response distribution. To capture a possible mismatch between the predicted and observed wind direction caused by location-specific properties, the approach incorporates a smooth rotation of the wind direction conditional on the season and the forecasted ensemble wind direction.
Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 101–114, https://doi.org/10.5194/ascmo-5-101-2019, https://doi.org/10.5194/ascmo-5-101-2019, 2019
Short summary
Short summary
Low-visibility conditions reduce the flight capacity of airports and can lead to delays and supplemental costs for airlines and airports. In this study, the forecasting skill and most important model predictors of airport-relevant low visibility are investigated for multiple flight planning horizons with different statistical models.
Manuel Gebetsberger, Reto Stauffer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 87–100, https://doi.org/10.5194/ascmo-5-87-2019, https://doi.org/10.5194/ascmo-5-87-2019, 2019
Short summary
Short summary
This article presents a method for improving probabilistic air temperature forecasts, particularly at Alpine sites. Using a nonsymmetric forecast distribution, the probabilistic forecast quality can be improved with respect to the common symmetric Gaussian distribution used. Furthermore, a long-term training approach of 3 years is presented to ensure the stability of the regression coefficients. The research was based on a PhD project on building an automated forecast system for northern Italy.
Thorsten Simon, Georg J. Mayr, Nikolaus Umlauf, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 1–16, https://doi.org/10.5194/ascmo-5-1-2019, https://doi.org/10.5194/ascmo-5-1-2019, 2019
Short summary
Short summary
Lightning in Alpine regions is associated with events such as thunderstorms,
extreme precipitation, high wind gusts, flash floods, and debris flows.
We present a statistical approach to predict lightning counts based on
numerical weather predictions. Lightning counts are considered on a grid
with 18 km mesh size. Skilful prediction is obtained for a forecast horizon
of 5 days over complex terrain.
Jutta Vüllers, Georg J. Mayr, Ulrich Corsmeier, and Christoph Kottmeier
Atmos. Chem. Phys., 18, 18169–18186, https://doi.org/10.5194/acp-18-18169-2018, https://doi.org/10.5194/acp-18-18169-2018, 2018
Short summary
Short summary
This paper investigates frequently occurring foehn at the Dead Sea, which strongly impacts the local climatic conditions, in particular temperature and humidity, as well as evaporation from the Dead Sea, the aerosol load, and visibility. A statistical classification exposes two types of foehn and first-time, high-resolution measurements reveal trigger mechanisms and relevant characteristics, such as wind velocities, affected air layers, and resulting phenomena such as hydraulic jumps and rotors.
Reto Stauffer, Georg J. Mayr, Jakob W. Messner, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 65–86, https://doi.org/10.5194/ascmo-4-65-2018, https://doi.org/10.5194/ascmo-4-65-2018, 2018
Short summary
Short summary
Snowfall forecasts are important for a range of economic sectors as well as for the safety of people and infrastructure, especially in mountainous regions. This work presents a novel statistical approach to provide accurate forecasts for fresh snow amounts and the probability of snowfall combining data from various sources. The results demonstrate that the new approach is able to provide reliable high-resolution hourly snowfall forecasts for the eastern European Alps up to 3 days ahead.
Thorsten Simon, Nikolaus Umlauf, Achim Zeileis, Georg J. Mayr, Wolfgang Schulz, and Gerhard Diendorfer
Nat. Hazards Earth Syst. Sci., 17, 305–314, https://doi.org/10.5194/nhess-17-305-2017, https://doi.org/10.5194/nhess-17-305-2017, 2017
Short summary
Short summary
The study presents a newly developed statistical method to assess the risk of thunderstorms in complex terrain. Observations of lightning serve as an indicator for thunderstorms. The application of the method is illustrated for Carinthia which is located in Austria, Europe.
F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr
Geosci. Model Dev., 8, 2067–2078, https://doi.org/10.5194/gmd-8-2067-2015, https://doi.org/10.5194/gmd-8-2067-2015, 2015
Short summary
Short summary
Three practical meteorological applications with different characteristics highlight the core computer science aspects and applicability
of distributed computing to meteorology. Presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts.