Status: this preprint has been withdrawn by the authors.
Impact of Optimal Observational Time Window on Parameter Optimization and Climate Prediction: Simulation with a Simple Climate Model
A. A. Yuxin Zhao,B. B. Xiong Deng,and C. C. Shuo Yang
Abstract. Usually, an optimal time window (OTW) centred at the assimilation time to collect measured data for an assimilation cycle, can greatly improve the CDA analysis skill. Here, with a simple coupled model, we study the impact of optimal OTWs on the quality of parameter optimization and climate prediction. Results show that the optimal OTWs of valid atmosphere or ocean observations exist for the parameter being estimated and incorporating the parameter optimization will do some impact on the optimal OTWs for the state estimation. And using the optimal OTWs can enhance the predictability both of the atmosphere and ocean.
This preprint has been withdrawn.
Received: 13 Dec 2015 – Discussion started: 21 Jan 2016
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
An optimal time window centred at the assimilation time to collect measured data for an assimilation cycle, can improve the CDA analysis skill. We study the impact of optimal OTWs on the quality of parameter optimization and climate prediction in a simple coupled model. Results show that the optimal OTWs of valid atmosphere or ocean observations exist for the parameter being estimated and incorporating the parameter optimization will enhance the predictability both of the atmosphere and ocean.
An optimal time window centred at the assimilation time to collect measured data for an...